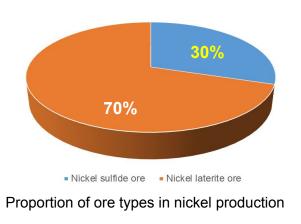


PRODUCTION OF BATTERY GRADE NICKEL AND COBALT SULFATE FROM NICKEL LATERITE ORE

Kaixi Jiang*, Haibei Wang, Sanping Liu BGRIMM / Zijin Ming Group / Fuzhou University

May 28th, 2024 Perth, Australia


*Presenter

- **1. Introduction**
- 2. Leaching of Nickel Laterite Ores
- 3. MHP Refining
- 4. Summary

Nickel mining production in 2023 (metric tons) 1,800,000 Indonesia 400,000 Philippines 230,000 New Caledonia** 200,000 Russia 180,000 Canada 160,000 Australia China 110,000 89,000 Brazil 17.000 United States Rest of world 380,000 250 000 500.000 750 000 1 000 000 1 500 000 1 250 000 1 750 000 Production in metric tons Source: USGS

1. Introduction

1. Introduction

- □ World nickel production: 3.57 Mt in 2023.
- □ Indonesia nickel production: 1.8 Mt in 2023, accounting for 50.4% of world production.
- □ Proportion of ore types in nickel production: 30% sulfide ore VS 70% laterite ore.

o ZiJi∩

Main processes Nickel laterite ores

Pyrometallurgy

RKEF \rightarrow ferronickel (Ni>25%)

Blast furnace \rightarrow pig iron (Ni>5%)

Matte smelting → nickel matte (Ni~70%)

Rotary kiln reduction -- magnetic separation \rightarrow metallic Ni/Fe powder

Characteristics

- mature and widely used
- high Ni recovery
- high energy consumption
- poor adaptability, suitable for processing high-grade laterite ore
- Co in ferronickel / pig iron devaluated

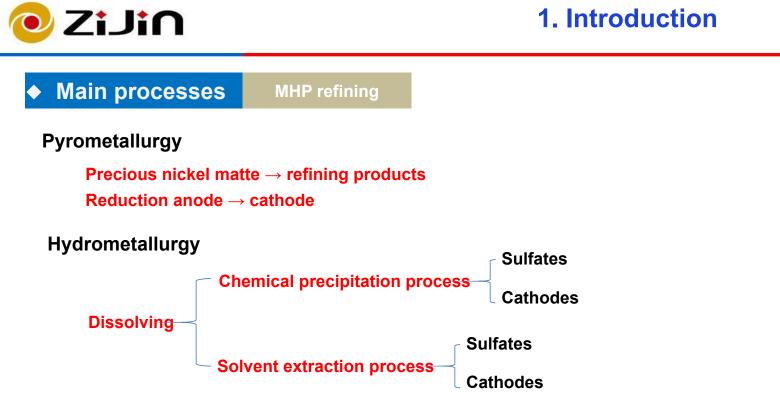
Main processes Nickel laterite ores

Hydrometallurgy

High pressure acid leaching (HPAL): a standard technology for limonite laterite ores.

- High nickel extraction ($E_{Ni} > 95\%$);
- Low acid consumption (iron precipitated as hematite);
- High pressure up to 5.5MPa, high temp. up to 270°C.

Alternative


Atmosphere tank leaching (ATL): LOGIC: Recovery exchanges costs.

Primary leaching: high acid concentration, high Ni and Fe extraction;

Secondary leaching: feed - high magnesium laterite (saprolite), neutralization and iron precipitation with saprolite leaching.

- Low CAPEX and OPEX;
- Lower nickel extraction (*E*_{Ni} 85~93%) ;
- Higher acid consumption (^{"up} to 90% iron precipitated as jarosite or goethite, maybe with lime addition).

2. Leaching of Nickel Laterite Ores

Inverse Leaching* Process

(*ALTA 2013 keynote)

2 types of laterite ores

Limonite (high Fe, low Mg)

Saprolite (low Fe, high Mg)

General process

- Limonite ore \rightarrow HPAL
- Saprolite ore \rightarrow AL (Neutralization + Leaching)

Inverse leaching process

• Limonite ore \rightarrow AL (High acid, ~95 °C)

7

• Saprolite ore \rightarrow PAL (150~160°C)

OiLiS 🧿

2. Leaching of Nickel Laterite Ores

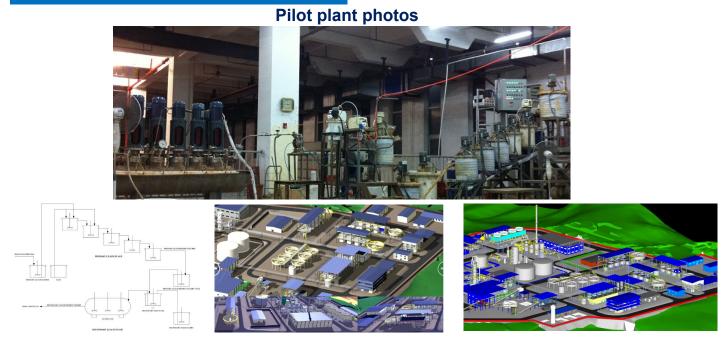
Inverse Leaching Process

BGRIMM's special flowsheet — an inverse leaching process (patented)

Primary leaching: atmosphere tank leaching

- Feed: limonite portion of laterite ores;
- ~95 °C, input: 100% acid, 97~99% E_{Ni} & E_{Fe};

Secondary leaching: autoclave leaching


- Feed: saprolite portion of laterite ores;
- Around 150~160°C, no acid input, 500~600kPa;
- Total E_{Ni} 93~96%;
- No acid consumption for 90~95% Fe.

The leaching combination changes the BIG DIFFICULTY of HPAL to "a common routine process"!

2. Leaching of Nickel Laterite Ores

Inverse Leaching Process

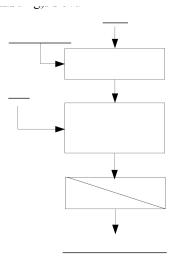
2. Leaching of Nickel Laterite Ores

Inverse Leaching Process

Leaching performance of IL process

	Prima	ary Leach Re	sults	Secondary Leach Results		
	Ni	Fe	Mg	Ni	Fe	Mg
Residue Solids Grade (%)	0.05	8.38	1.32	0.15	21.11	1.57
PLS Concentration (g/L)	5.08	56.70	40.11	5.29	3.40	49.41
Solids-based Metal Extraction (%)	98.40	80.63	94.56	93.44	19.94	92.65
Residue Free Acid (g/L)	18.85	(H ₂ SO ₄)		15.39	(H ₂ SO ₄)	
% Mass Remaining (%)	48.10			64.37		

2. Leaching of Nickel Laterite Ores


Two-stage Pressure Leaching Process

HPAL — AL process used in Indonesia

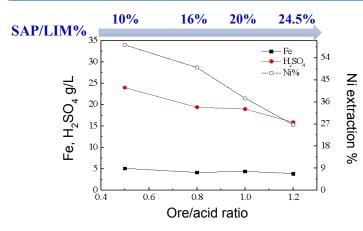
- ◆ Limonite ore → HPAL
- □ Ni and Co extraction > 95%
- $\Box \quad \text{Fe precipitation} \rightarrow \text{acid release}$

• Saprolite ore \rightarrow AL

- HPAL leached slurry is neutralized by SAP to reduce acid consumption
- □ Ni extraction : 40~60% (low)

11

OiLiS 🧿


2. Leaching of Nickel Laterite Ores

Two-stage Pressure Leaching Process

HPAL — AL process used in Indonesia

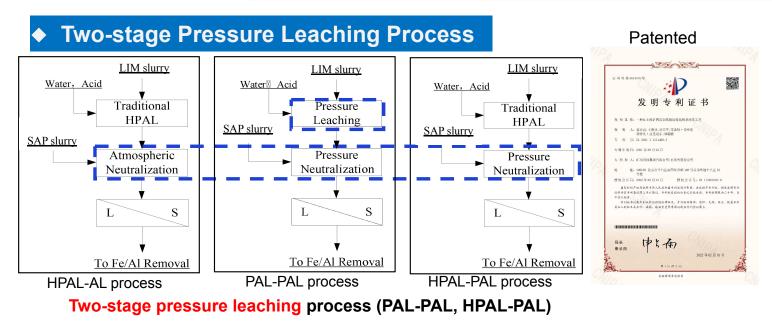
Disadvantages

- □ Ni extraction in AL : 50%.
- □ More Fe is leached when Ni extraction reaches 65~70% with acid introduction.

C_{Fe}	comparison of HAPL and AL PLS with different SAP
10	additions (AL remaining acid 10g/L)

SAP/LIM%	Fe, g/L				
SAF/LIWI 70	HPAL solution	AL solution			
8	2.8	4.2			
20	1.6	6.2			

Two-stage Pressure Leaching Process


In order to improve the inverse leaching process and HPAL – AL process, BGRIMM proposed the combinations of two-stage leaching:

- AL PAL (95 °C / 150~225 °C, 0.5~2.5 MPa)
- PAL PAL (150~225 °C, 0.5~2.5 MPa)
- HPAL PAL (240~270 °C, 3.3~5.5 MPa / 150~225 °C, 0.5~2.5 MPa)

14

2. Leaching of Nickel Laterite Ores

- $\Box \quad LIM \to HPAL$
- □ SAP → PAL: HPAL slurry flows to 2nd autoclave without flashing. SAP slurry is leached by using the heat and remaining acid of HPAL slurry.

• Comparison of 3 leaching combinations

Leaching conditions:

- ♦ HPAL(250°C) –AL(95°C)
- ♦ HPAL(250°C) PAL (230°C)
- ◆ PAL(225°C) -PAL(200°C)

2. Leaching of Nickel Laterite Ores

• Comparison 1:

HPAL(250°C) — AL(95°C)

- HPAL: Ni extraction >97%. AL: Ni extraction 47-56%
- ♦ Total Ni extraction ~85%.

LIM/SAP		100:25		100:30		100:35	
Leaching stage		HPAL	AL	HPAL	AL	HPAL	AL
Total extraction /%	Ni	96.91	86.80	97.58	85.93	97.58	82.63
Extraction in this stage/%	Ni	96.91	56.06	97.58	55.55	97.58	47.01

• Comparison 2:

HPAL(250°C) — PAL (230°C)

- HPAL: Ni extraction >97%. PAL: Ni extraction 80-87.3%.
- Total Ni extraction 92-94%.

LIM/SAP		100:25		100:30		100:35	
Leaching stage		HPAL	PAL	HPAL	PAL	HPAL	PAL
Total extraction /%	Ni	97.73	94.10	97.91	93.45	96.74	92.15
Extraction in this stage/%	Ni	97.73	87.34	97.91	83.84	96.74	80.18

17

2. Leaching of Nickel Laterite Ores

Comparison 3:

PAL(225°C) — PAL(200°C)

- PAL: Ni extraction >97%. PAL: Ni extraction 73-78.6%.
- Total Ni extraction 87.6-90.6%.

LIM/SAP		100:25		100:30		100:35	
Leaching stage		1	2	1	2	1	2
Total extraction /%	Ni	96.11	90.57	96.91	89.47	93.25	87.64
Extraction in this stage/%	Ni	96.11	78.63	96.91	75.64	93.25	73.00

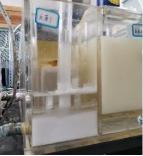
Comparison of 3 leaching combinations

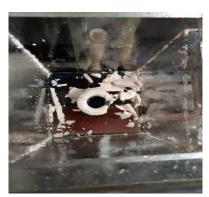
- Use heat and remaining acid of HPAL slurry, Ni extraction greatly improved.
 SAP E_{Ni} 56% (AL)→87% (PAL); Total E_{Ni} 86% (AL)→94% (PAL)
- Under pressure condition and longer retention, more Fe/AI precipitate:

 $C_{_{Fe}}$ 1~2g/L (AL) ightarrow 0.75g/L (PAL); $C_{_{AI}}$ 6.5g/L (AL)ightarrow0.6g/L (PAL)

Less limestone consumption and less Ni/Co losses in Fe/Al removal

Leaching stage		HPAL-AL	HPAL-PAL	PAL-PAL	
Solution/(a/L)	Fe	1.18	0.68	0.75	
Solution/(g/L)	Al	6.53	0.63	1.44	
Total extraction /%	Ni	86.80	94.10	90.57	
SAP — Extraction/%	Ni	56.06	87.34	78.63	


*LIM / SAP = 100 : 25



Disadvantages of current MHP Refining Process

- Large amount Fe/AI residue results in large Ni/Co losses
- □ CaSO₄ crystals scaling
 - CaO to remove Fe/Al.
 - Ca²⁺ saturated.
 - CaSO₄ crystals during P204 scrubbing and stripping.
 - CaSO₄ scaling on the wall of tank, pipes, impellers, etc..
- Complex SX combination to separate Ni, Co and Mg
 - Ni, Co and Mg separation with C272 and P507, respectively

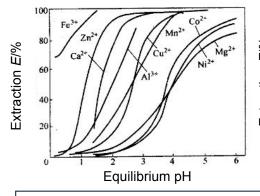
3. MHP Refining

3. MHP Refining

P#0

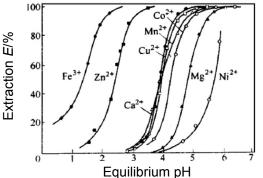
VOH

(b) 100


Extraction (%) 6 0 8

20

0 0



SX isotherm

P204 (D2EPHA)

- Fe³⁺>Zn²⁺>Ca²⁺>Cu²⁺>Mn²⁺ >Co²⁺>Mg²⁺>Ni²⁺
- P204: Cu, Zn, Ca, Mn removal

P507 (PC88A) Fe³⁺>Zn²⁺>Ca²⁺~Cu²⁺~Mn²⁺>

- Co²⁺>Mg²⁺> Ni²⁺
- P507: Ni, Co, Mg separation

C272

- $Fe^{3+}>Zn^{2+}>Cu^{2+}>Co^{2+}>$ $Mg^{2+}>Ca^{2+}>Ni^{2+}$
- C272: Ni / Co separation (high efficiency)

Mn

5 6

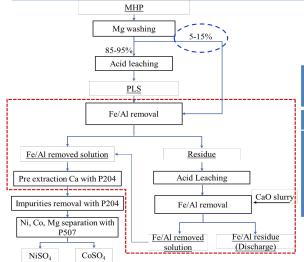
Equilibrium pH

Zn

Mg

21

3. MHP Refining


Element	Са	Со	Ni	Cr	Cu	Cd	Fe				
Content/%	0.15	3.92	40.85	0.0193	0.10	<0.001	0.076				
Element	Li	Mg	Mn	Si	Pb	Р	AI				
Content/%	<0.001	1.46	5.25	0.14	0.18	0.063	0.24				
Element	Ag	Hg	Na	Ti	Zn						
Content/%	<0.001	0.12	0.34	0.014	0.73						

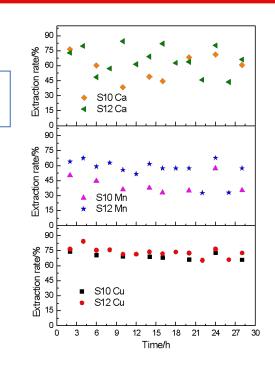
MHP Composition (Ramu)

MHP used to remove Fe/Al/Si

- □ 5~15% MHP is used in neutralization to remove Fe/Al/Si.
- Consume remaining acid.
- \square 90% CaO consumption is reduced. Thus, the CaSO₄ crystallization on scaling is reduced. Meanwhile, Fe/Al residue amount is reduced (less CaSO₄), and Ni&Co losses are reduced.

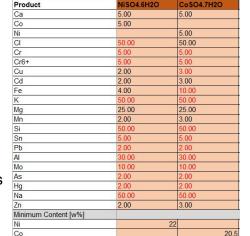
		Results	5	
% MHP addition		5.0	11.4	14.7
Final pH		4.19	4.98	5.05
	Fe	<0.001	<0.001	<0.001
Fe/Al removed	Al	0.099	0.058	0.073
solution (g/L)	Cr	0.009	<0.001	0.003
(9′⊏)	Si	1	/	0.043

23



Pre extraction Ca and purification (Cu/Mn/Zn removal) with P204

- Pre extraction Ca with P204.
- 50% Ca is removed.


3. MHP Refining

Ni/Co/Mg separation in one SX train

- 6 stages Na and Ni saponification 8 stages Ni extraction 10 stages Mg scrubbing – 4 stages Co stripping – 2 stages acid scrubbing.
- Ni in raffinate. Separate Mg by scrubbing. Co by stripping.

Battery grade products

3. MHP Refining

Reduction smelting — crude nickel anode electrolysis

Hydro-process problems:

- SX process: large acid and alkali consumption, large MgSO₄ open circuit, large amount of waste water, large amount of hazardous wastes
- Mg removal by fluoride: superfluous F⁻; F⁻ has negative impact on Ni electrolysis

Impurities removal by pyrometallurgy process

Reduction smelting — crude nickel anode electrolysis — anode liquid purification process

26

3. MHP Refining


Reduction smelting — crude nickel anode electrolysis

Test No.	Metal								
Test NO.	Ni	Со	Mn	Fe	Cu	Zn			
1	85.5	4.03	4.2	1.08	0.10	0.31			
2	83.4	3.87	4.50	2.13	0.012	0.006			
3	84.2	3.92	4.35	2.29	0.012	0.15			
4	77.0	3.20	6.10	1.97	0.012	0.006			
5	82.8	4.05	4.54	1.77	0.011	0.001			
6	85.6	4.08	4.38	1.84	0.011	0.010			
7	84.4	4.05	4.22	1.92	0.012	0.025			

Crude nickel buttons

- Ni/Co/Cu mainly enter to metal. Crude nickel contains 80-85% nickel and 4% cobalt.
- Almost all CaO, MgO, Al₂O₃, and SiO₂ enter into slag.
- 85~97% zinc enters into dust. Zn is removed.
- 20% Mn enters into metal and 80% enters into slag.

OiLiS 🧿

3. MHP Refining

Reduction smelting — crude nickel anode electrolysis

Electrolysis test results

Test No.	Anode current efficiency/%	Cathode current efficiency/%
1	95.8	98.2
2	94.7	99.3
3	94.4	98.9
4	94.7	98.7
5	95.0	98.6
6	95.6	98.9

Nickel cathode composition

Test >99.96 0.0018 0.0004 <0.0001	Pb
Element Sn Sb Bi Si Mn	.001
	.0003
Standard* 0.0003 0.0003 0.0003 0.002 - 0	Мg
	.001
Test <0.0002 0.0002 <0.0005 <0.001 0.0001 <0	0.001
Element Zn Cd Fe Al As	
Standard* 0.0015 0.0003 0.01 - 0.0008	
Test 0.0008 0.0001 0.0021 <0.001	

Standard*: GB/T 6516-2010

GB/T 6516-2010 electrolytic nickel standard

Grade: Ni9996

- Inverse leaching (IL) process is very flexible to treat LIM and SAP (Or transitional laterite ore)
 - Ni extraction ~ 95%, at least 10% higher than ATL.
- Two-stage pressure leaching (HPAL PAL) process is very efficient to treat LIM and SAP
 - Ni extraction increases greatly. SAP E_{Ni} 50% (AL) \rightarrow 95% (PAL);
 - PLS: $C_{F_{P}}$ 1~2g/L (AL) \rightarrow 0.75g/L (PAL); C_{A} 6.5g/L (AL) \rightarrow 0.6g/L (PAL);
 - Less limestone consumption and less Ni/Co losses in Fe/Al removal.

4. Summary

MHP refining process -- Dissolving and SX-purification -- High pure Ni/Co - sulfates with battery grade

- MHP is used in neutralization, to reduce CaO consumption, thus residues and Ni &Co losses could be reduced;
- Reduction of CaSO₄ crystals during impurities removal with P204 -SX;
- Ni/Co/Mg separation with P507 in one SX train;
- Continous SX purification and separation flow-sheet.

Reduction smelting — crude nickel anode electrolysis process

- High recovery: Ni >97%, Co > 90%;
- Easy removal of Ca, Mg, Al, Si, Mn and Zn (into slag / dust);
- Suitable for low grade MHP (low cost), due to low acid and alkali consumption;
- Environment friendly (much less wastes).

Thank you!

Contact Email: jiangkx@bgrimm.com Mobile: +86-13601177027 Wechat: KAIXI_JIANG