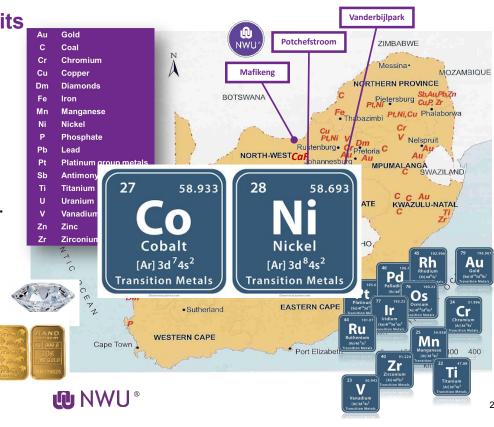
Mass Transfer Intensification Implementing the Use of Static Mixers in Co/Ni Solvent Extraction

Derik J. van der Westhuizen

derik.vanderwesthuizen@nwu.ac.za

¹Johan W. Bezuidenhout, ¹Reynhard van der Berg ¹Burgert B. Hattingh, ²Derik J. van der Westhuizen

¹School of Chemical and Mineral Engineering, North-West University, South Africa ²RFA: Chemical Resource Beneficiation, Hydrometallurgy group, North-West University, South Africa



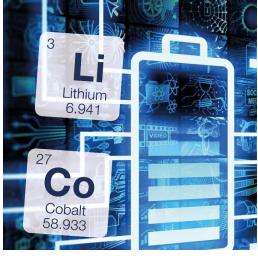
Introduction

South African mineral deposits

- RSA have the world's
 5th-largest mining sector
 (gross domestic product value)
- Mining companies are key players in the global industry.
- SA holds the world's largest reported reserves of Au (30%), PGMs (88%), Cr (72%) and Mn (80%), and th 2nd-largest reserves of Zr, V and Ti.

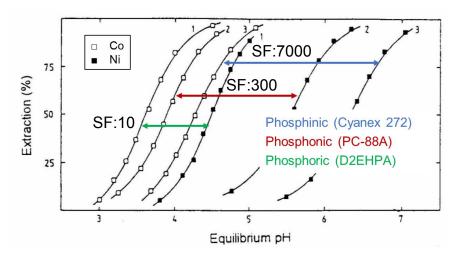
Pocket Guide to South Africa 2022/23: Mineral Resources

Country	Number of wins (years)		
South Africa	4 (1995, 2007, 2019, 2023)		
New Zealand	3 (1987, 2011, 2015)		
Australia	2 (1991, 1999)		
England	1 (2003)		

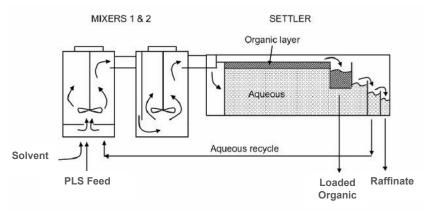

Introduction

Critical Minerals: Co/Ni

- Global Co/Ni demand is increasing
- Driven by:
 - stainless steel
 - electric vehicle
 - energy storage solutions


Co/Ni separation: SX

Gordosky, HydroMet Short Course, 2011

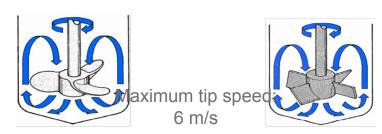

Cyanex 272:

- more stable to oxidative degradation by Co(III)
- more selective for Co over Ca
- · minimises crud formation

Introduction

SX contactors: Mixer-settlers




SX contactors: Mixer-settlers

b) Drops too large – slow transfer kinetics

Rule-of-thumb: 100-150 µm

Courtesy of Johann Brits

Introduction

SX contactors: Mixer-settlers

Foaming

SX contactors: Mixer-settlers

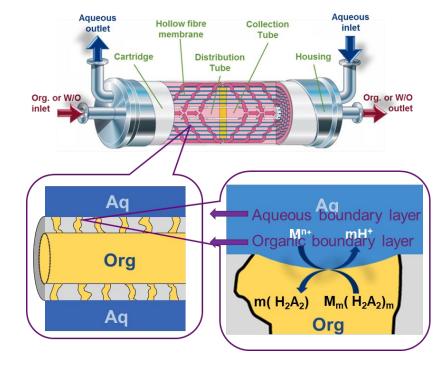
Crudding

https://www.metso.com/portfolio/vsf-x-s olvent-extraction-plant/

Introduction

SX contactors: Mixer-settlers

Organic Recovery
Systems
(Coalescers)


SX contactors: Pertraction (PX)

The "microfiltration" membrane:

- · Does not filter
- Bubble point larger than 100 kPa
- · Low diffusion resistance: thin (30 mm) and porous (40-50%)
- · Compatible with solvent and feed: PP-HF & PE-potting

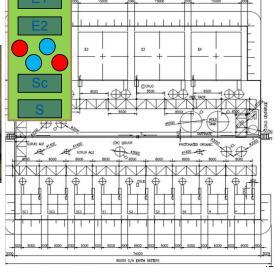
The contactor module:

- High area: 40-400 m²
- Hydraulic diameter: 0.3-1 mm
- Low pressure drop: < 10 kPa/m @ $V_{sup} = 2 \text{ cm/s}$
- Low cost: ± 50 USD/m²

van der Westhuizen, D.J., et al., NWU, PCTWO2012/168915A

Introduction

SX contactors: Pertraction (PX)


Advantages

- High, well defined mass transfer area
- No flooding/crud: process control
- Less rotating equipment: maintenance
- Less solvent holdup & closed operation: safety
- Smaller footprint: CAPEX

Challenges

- Membrane replacement cost
- No proven technology
- Extra mass-transfer resistance

Scope of study

SX contactors: Hybrid Pertraction (HPX)

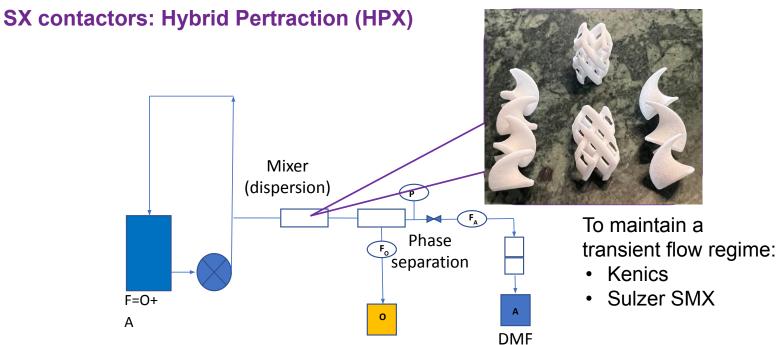
"Rapid mixing and phase separation"

Hollow fibre membrane contactors

Feed/Solvent Dispersion is fed into HFM

Solvent droplets coalesce on fibre inner wall

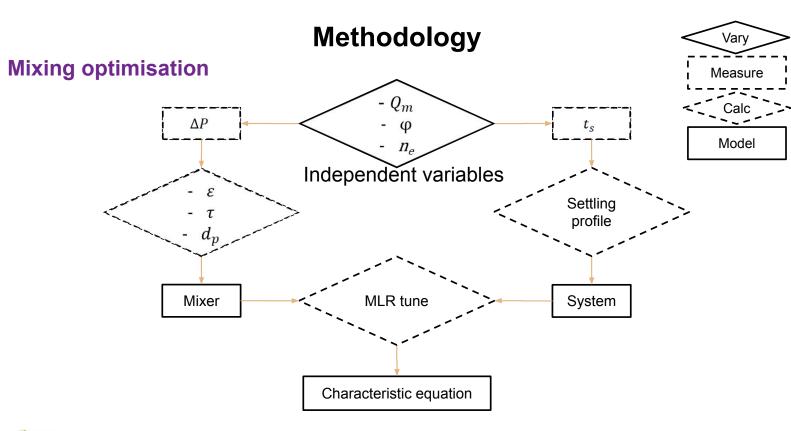
Solvent selectively permeates over membrane to module shell-side


Aqueous Feed retained on lumen-side

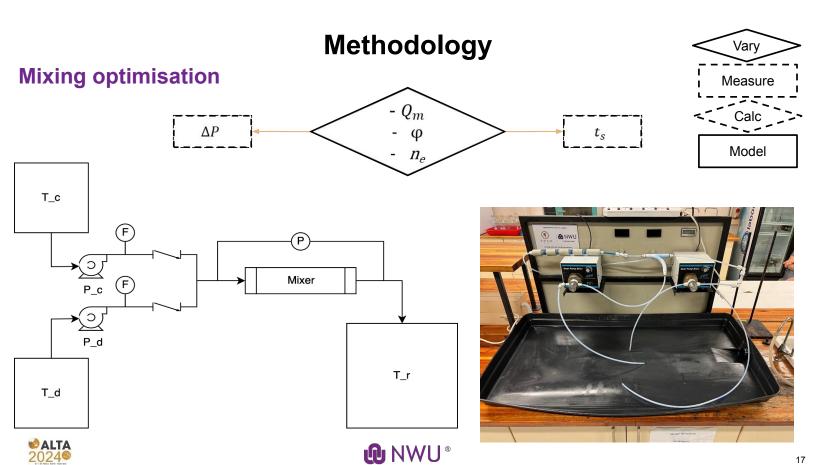
van der Westhuizen, D.J., et al., NWU, Co/Ni-HPX Technical Report, 2023

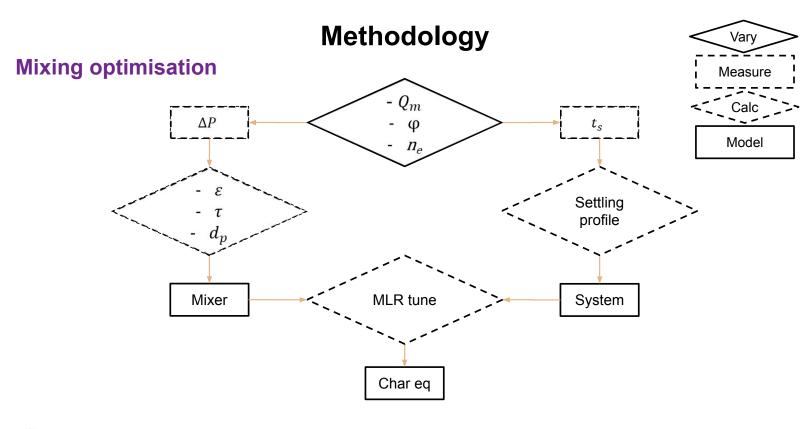
Aim & Objectives

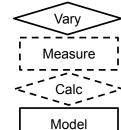
The aim of this study is to assess the suitability of static mixers to enhance the mass-transfer rate by reducing the Sauter mean diameter of the dispersion for a Co/Ni solvent extraction system.

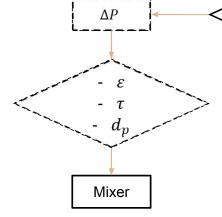

Objectives:

- Prediction of the diffusion coefficients for a Co/Ni system
- Comparison of the residence time and the Sauter mean diameter
- Static mixer model determination and validation in a non-reactive system
- Evaluation of the static mixer model in a reactive Co/Ni system
- Assessment of phase separation in a hollow-fibre membrane




.





Morancais, P., et. al., 1999. Chemical Engineering Communications, 171(1), 77-93.

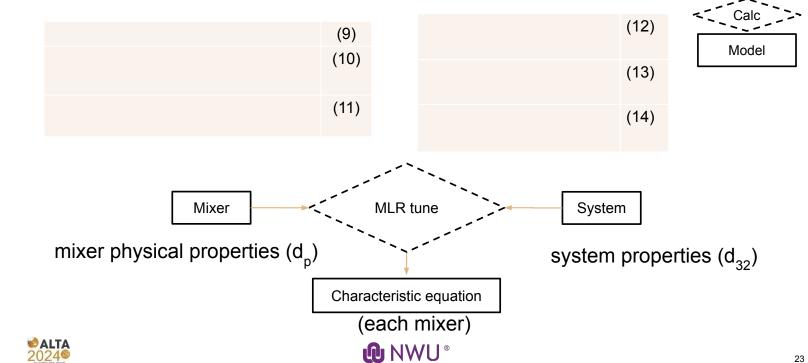
Methodology Vary **Mixing optimisation** Measure Q_m Calc ΔP φ Model n_e Settling τ profile MLR tune Mixer System Char eq

(non-linear regression)

Kumar, A. et al.., 1985. The Canadian Journal of Chemical Engineering, 63(3), 368-376.

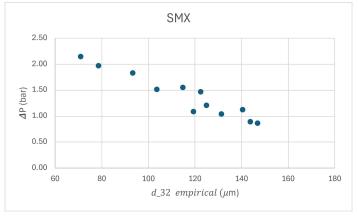
Yu, G.Z. et al.. 2004. Engineering-Biotechnology, 27(4):407-413.

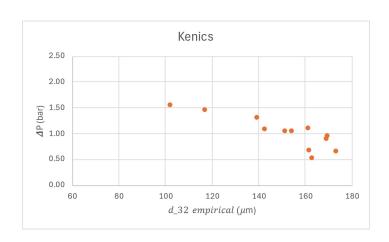
Methodology Vary **Mixing optimisation** Measure Q_m ΔP φ Model n_e Settling τ profile MLR tune Mixer System Char eq



21

Methodology


Mixing optimisation

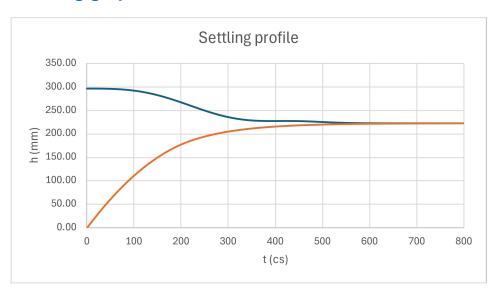


Results and Discussion

Mixing optimisation

ΔP vs d32 empirical

- Kenics: lower pressure drop
- However: increased droplet sizes



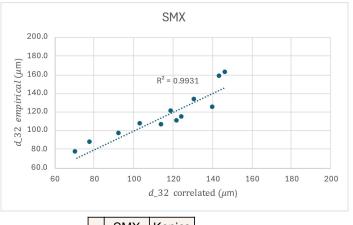
Vary

Measure

Mixing optimisation

Settling graph

- The data could be fairly well fitted
- The suitable data were used to better approximate j and k
- Used to correlate the empirical Sauter diameter more efficiently



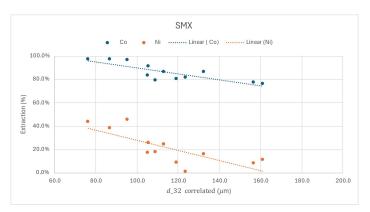
Results and Discussion

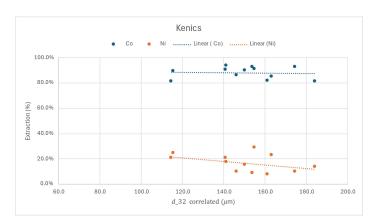
Mixing optimisation

Parity plots

			Kenics	;			
200.0							
180.0				$R^2 = 0$.9953)	
160.0 160.0 140.0 2 E 100.0 2 E 100.0 10					•		
0.041 Lical							
120.0		•		•••			
7 100.0							
80.0							
60.0							
60	80	100	120 d 32 corr	140 elated (μn	160 n)	180	200

	SMX	Kenics
α	36.42	45.55
β	-4.04	-6.12
γ	1.37	2.83
δ	-0.21	-0.05


Kenics: Smaller distribution, but better fit



Mixing optimisation

%E vs correlated d32

- The smaller droplets in the SMX: higher Co extraction
- Larger droplet size: decreased the extraction rapidly

- Kenics: better contact obtained
- However, a relative higher Ni transfer was also obtained - reduce selectivity

M NWU®

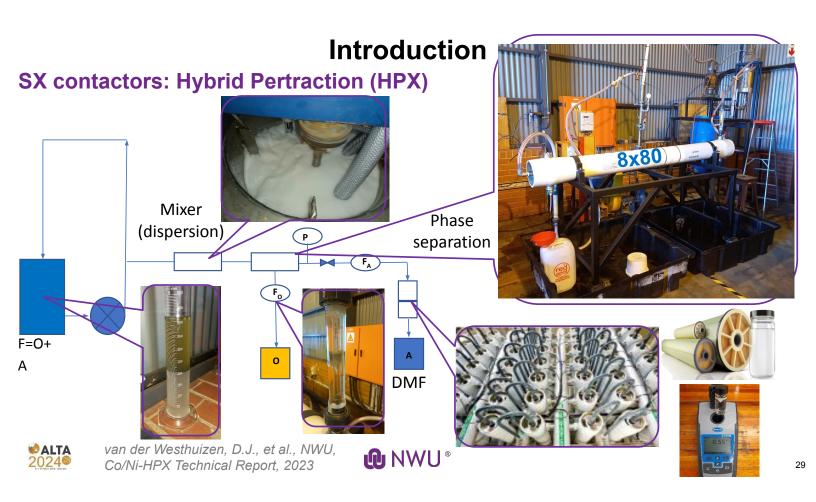
Scope of study

SX contactors: Hybrid Pertraction (HPX)

"Rapid mixing and phase separation"

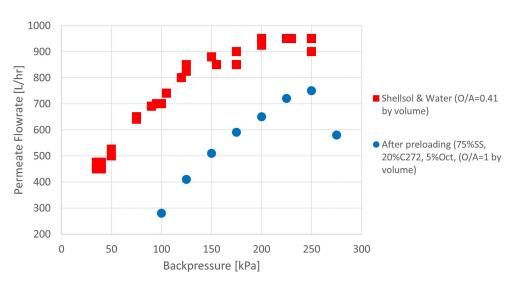
Hollow fibre membrane contactors

Feed/Solvent Dispersion is fed into **HFM**


Solvent droplets coalesce on fibre inner wall

Solvent selectively permeates over membrane to module shell-side

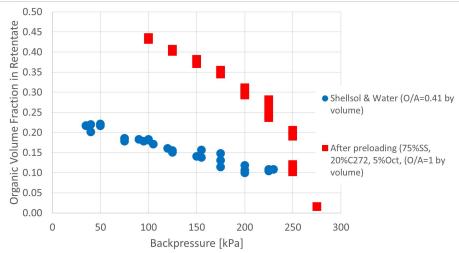
> Aqueous Feed retained on lumen-side



Phase separation

Permeate flowrate as a function of retentate back-pressure

Evident that:


- System can be controlled
- Obtain a clean permeate
- Dispersion Viscosity effects the flow rates directly
- Next step: Co/Ni-system

Phase separation

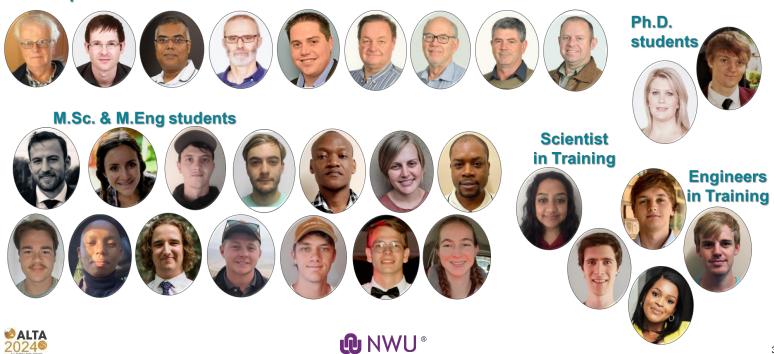
Clarification of retentate (aqueous raffinate)

- At 270kPa < 1% Org in retentate
- Needs to be reduced further to < 10ppm
- At max back-pressure: the org fraction SS-H₂O equals the C272-H₂O

van der Westhuizen, D.J., et al., NWU, Co/Ni-HPX Technical Report, 2023



Conclusion and Future work


- Static-mixer connected with an overhead stirrer and homogeniser produces milky dispersion and generates feed pressure to HPX module.
- 8x80 Liqui cell separates aqueous from the organic with a clear organic permeate but does not produce clear aqueous retentate (yet).
- DMF removes fine organic droplets from oil in water dispersion, but it is not effective enough.
- Use PPG hydrophilic membranes as clarifier (<10ppm).
- Procure on-line turbidimeter.
- Repeat and optimise for real feed solution, incl. Ni-scrubbing and Co-stripping

Principle collaborators

Questions?

Contact details:

Group leader: Derik van der Westhuizen E: derik.vanderwesthuizen@nwu.ac.za

T: +27182992346

W: https://natural-sciences.nwu.ac.za/hydrometallurgy

Droplet Size and mass transfer modelling

- GENERAL INFO
- WHY?
- AIM

Mass transfer modelling

- Mass transfer occurs between the dispersed and continuous phase and is described by diffusion and reaction parameters.
- Mass transfer is halted when the dispersed and continuous phase are in equilibrium This occurs at the equilibrium time t_{eq} .
- The equilibrium time, t_{eq} , is dependent on the radius of the droplets in the dispersed phase.

Mass Transfer Modelling

- Model Assumptions
 - All dispersed droplets are spherical
 - The concentration of the extractant species is equal at all points within the droplet at t=0.
 - The surface of the droplet is always in equilibrium with the dispersed and continuous phase

• ...

Mass Transfer Modelling

■ The rate of extraction can be written as the combined effect of radial diffusion and the reaction rate.

$$\partial_t c_i = D_{ij} \left\{ \partial_r^2 c_i + \frac{2}{r} \partial_r c \right\} + R_i$$

• The solution of the reaction-diffusion rate equation can be deduced from the non-reactive diffusion equation considering the following boundary conditions and taking $u = rc_1$.

$$u=0, \qquad r=0 \ \forall \ t>0$$

$$u=rc_0, \qquad t=0 \ \forall \ r\in (0,r_s)$$

$$u=r_sc_{eq}, \qquad t>0, \qquad r=r_s$$

• For the purpose of model simplification, we assume that the reaction rate, R_i , is first order and given by

$$R_i = k_1 c_i$$

Mass Transfer Modelling

■ Using Danckwert's method (reference) the solution to the reaction-diffusion model is given by:

$$c = k_1 \int_0^t c_1 e^{-k_1 t'} dt' + c_1 e^{-k_1 t}$$

which equates to

$$c = \left(2e^{-k_1t} - 1\right) \left\{ \left\{c_{eq} - c_0\right\} \left\{1 + \frac{2r_s}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi r}{r_s} \exp(-Dn^2\pi^2 t/r_s^2) \right\} + c_0 \right\}$$

■ Rewriting the solution in the form $(c-c_0)/(c_{eq}-c_0)$ allows for dimensionless analysis of the equilibrium time needed for the extraction, scrubbing or stripping to occur. This also allows the user to investigate the concentration distribution of a component at any radial position within the droplet as a function of time

Mass Transfer Modelling

- MODEL PROS and CONS (TABLE FORMAT)
- The model can be used to estimate equilibrium times based on droplet sizes produced using chosen mixer types or to estimate droplet sizes based on target equilibrium times for a specific system
- The model can be applied to almost any dispersive extraction system both non-reactive and reactive extraction.
- The model associates a fitting parameter Value must be determined experimentally (SOFAR...)
- The model does not consider physical interactions in the mixing process
 - coalescence, shearing, etc...

Model Validation – Cobalt Solvent extraction with Cyanex 272

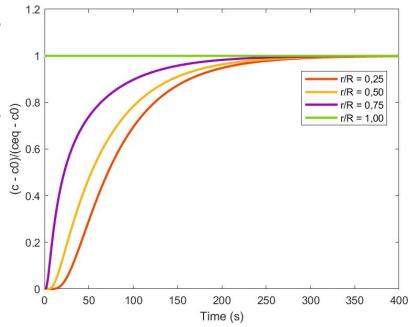
Literature, constants, initial conditions, etc.

Finding Diffusivity and Equilibrium

Shake Flask Tests for equilibrium composition determination

Molecular Dynamics Simulations for Diffusivity determination

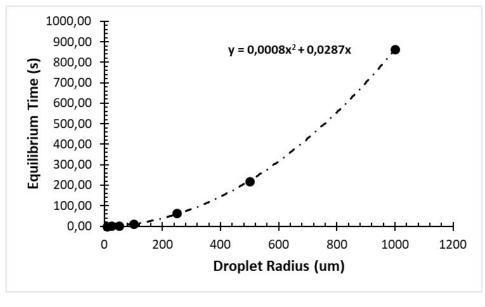
- Amorphous cell Organometallic species, Solvent environment, etc.
- Forcite geometry optimizations, cell annealing cycles and Molecular dynamics simulations
- Mean Square displacement and curve fitting
- Determination of the Diffusivities



Cobalt Mass Transfer model

 Results based on values and constants from literature vs results from MDS

■ Equilibrium times are chosen such that all radial positions converge at unity



@ NWU®

Equilibrium time vs droplet size

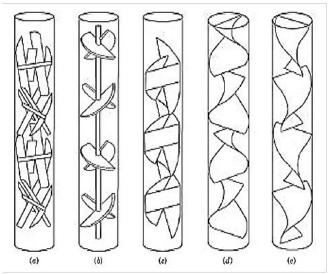
 Extrapolated equilibrium times compared to various droplet sizes with curve fitting to suitable function

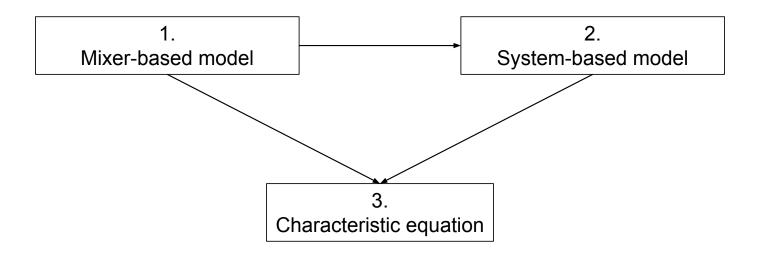
Mixing optimisation

Extraction efficiency $\propto \frac{1}{d_{32}}$

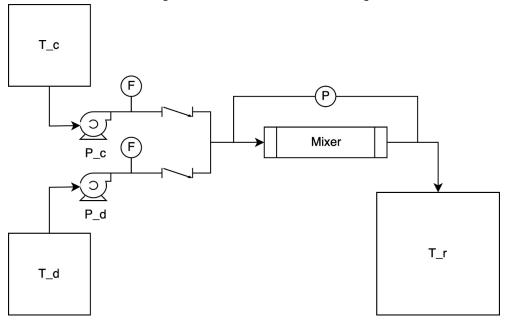
Static mixers

- Static mixers consist of moulded elements, e.g., vanes or baffles, housed in a tube
- These elements are engineered to form tortuous pores
- Turbulent flow is often realised within these narrow pores
- Flow down these pores causes vortices and eddies that promote mixing
- Contact is increased between the solution and solvent




Figure 1: Examples of static mixers
(a) Sulzer SMX (b) Ross LPD (c) Komax (d) Kenics (e) FixMix

Adapted from: Gyenis, J., 2002. Motionless Mixers in Bulk Solids Treatments—A Review. KONA Powder and Particle Journal, 20, pp.9-23.


Experimental regime

Experimental setup

T_c: Continuous phase tank; T_d: Dispersed phase tank; T_r: Residence tank;

P_c: Continuous phase pump; P_d: Dispersed phase pump; F: Flowmeter; P: Pressure meter.

Experimental regime variables

- Independent variables:
 - Mixture flow rate
 - Oil fraction
 - Number of mixing elements
- Dependent variables:
 - Pressure drop over the mixer
 - Settling time of the dispersion

Experimental regime

1.

Mixer-based model

- Measure the pressure drop over the mixer
- Calculate:
 - Porosity
 - Tortuosity
 - Pore diameter

using the method from Morancais et al. (1998).

Mixer-based model

■ Porosity:

$$\varepsilon = \frac{v_0}{v}$$

with v_0 : void volume (m^3) ; v: mixer volume (m^3) .

• Pore diameter (*m*):

$$d_p = \left(\frac{32}{K}\right)^{0.75} \, \left(\frac{J}{0.3872}\right)^{0.5} \, \varepsilon^{0.25}$$

Tortuosity:

$$\tau = \left(\frac{32}{K}\right)^{0.25} \left(\frac{J}{0.3872}\right)^{0.5} \varepsilon^{0.75}$$

J, *K*: slope and intercept of pressure drop equation.

Mixer-based model

Pressure drop equation [1]:

$$\frac{\Delta P}{L\mu_m U_s} = J \frac{\rho_m U_s}{\mu_e} + K$$

with ΔP : pressure drop over mixer (Pa); L: length of mixer (m); μ_e : viscosity of mixture (Pa.s); U_s : superficial velocity $(m.s^{-1})$; ρ_m : density of mixture $(kg.m^{-3})$.

5

Experimental regime

2.

System-based model

- Measure the settling time in T_r
- Calculate:
 - Experimental settling velocity
 - Calculated settling velocity
 - The Sauter mean drop diameter

using the method from Kumar & Hartland (1985).

System-based model

• Theoretical settling velocity $(m \cdot s^{-1})^{[2]}$:

$$v_{0,calc} = \frac{12\mu_{\rm c}}{0.53\rho_{\rm c}d_{\rm max}} \left[-1 + \sqrt{1 + \frac{0.53\rho_{\rm c}\Delta\rho g d_{\rm max}^3(1-\varphi)}{108\mu_{\rm c}^2(1 + 4.56\varphi^{0.73})}} \right]$$

with μ_c : Viscosity of continuous phase (Pa.s); ρ_c : Density of continuous phase $(kg.m^{-3})$; d_{\max} : Maximum droplet diameter (m); $\Delta\rho$: Density difference $(kg.m^{-3})$; g: Acceleration due to gravity $(m.s^{-2})$; φ : Oil fraction.

System-based model

■ Experimental settling velocity (m.s⁻¹):

$$v_{0,exp} = \frac{h_t - h_d}{t}$$

with h_t : Total dispersion height (m); h_d : Height of dispersed phase (m); t: Settling time (s).

• $d_{32} = 3\beta d_{\text{max}}$

with d_{32} : Sauter mean diameter (m); β : Size distribution parameter (≈ 0.13).

Experimental regime

3. Characteristic equation

- Calculate the tuning parameters specific to a static mixer using multiple linear regression.
- Oil fraction:

$$\varphi = \frac{\dot{Q_d}}{\dot{Q_d} + \dot{Q_c}}$$

with $\dot{Q_c}$, $\dot{Q_d}$: Continuous, dispersed phase flow rate $(m^3 . s^{-1})$.

• Mixture flow rate $(m^3 . s^{-1})$:

$$\dot{Q_m} = \dot{Q_d} + \dot{Q_c}$$

Characteristic equation

• Mixture density $(kg . m^{-3})$:

$$\rho_m = \varphi \rho_d + (1 - \varphi) \rho_c$$

with ρ_c , ρ_d : Continuous, dispersed phase density ($kg \cdot m^{-3}$).

■ Mixture viscosity (Pa.s):

$$\mu_m = \mu_c \left[1 + 2.5 \varphi \left(\frac{\mu_d + 0.4 \mu_c}{\mu_d + \mu_c} \right) \right]$$

with μ_c , μ_d : Continuous, dispersed phase viscosity (Pa.s).

Characteristic equation

■ Superficial velocity (m.s⁻¹):

$$U_s = \frac{4\dot{Q_m}}{\pi D^2}$$

with D: Pipe diameter (m).

■ Pore velocity $(m \cdot s^{-1})$:

$$U_p = \frac{U_s \tau}{\varepsilon}$$

Characteristic equation

■ Pore Reynold's number:

$$Re_p = \frac{\rho_e U_p d_p}{\mu_e}$$

Pore Weber number:

$$We_p = \frac{\rho_e U_p^2 d_p}{\sigma}$$

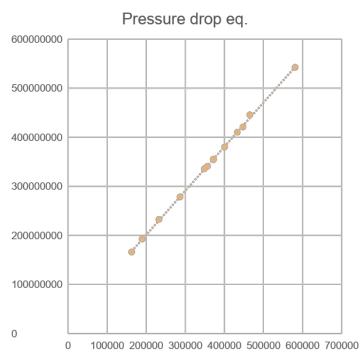
with σ : Interfacial tension (N . m^{-1}).

Characteristic equation

Characteristic equation:

$$\frac{d_{32}}{d_p} = \alpha Re_p^{\beta} We_p^{\gamma} n_e^{\delta}$$

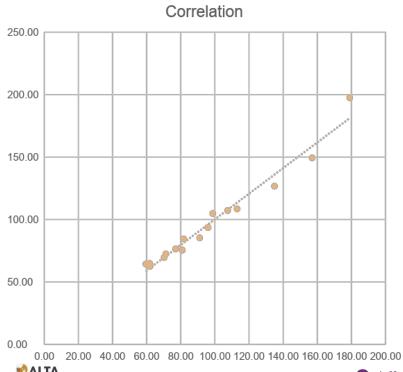
with n_e : Number of mixing elements; $\alpha, \beta, \gamma, \delta$: Tuning parameters.


Results: Static mixer 1

#	Q (ml/s)	φ	n_e
1	35	0.3	16
2	50	0.3	16
3	75	0.3	16
4	100	0.3	16
5	125	0.3	16
6	80	0.2	16
7	80	0.25	16
8	80	0.33	16
9	80	0.5	16
10	80	0.3	2
11	80	0.3	6
12	80	0.3	10
13	80	0.3	20
14	80	0.3	40
15	35	0.2	2
16	125	0.5	40

Results: Static mixer 1

J	898.41
K	21405000
ε	0.77
d_p (mm)	1.93
au	1.38


Results: Static mixer 1

#	Re	We	d_32 SV (micron)
	1	564.44	1.28	134.90
	2	806.34	2.62	98.78
	3	1209.51	5.90	81.70
	4	1612.68	10.49	71.23
	5	2015.85	16.39	59.54
	6	1502.65	6.83	70.24
	7	1389.25	6.77	80.90
	8	1236.47	6.68	91.09
	9	993.54	6.47	107.47
	10	1290.15	6.71	156.99
	11	1290.15	6.71	113.00
	12	1290.15	6.71	96.00
	13	1290.15	6.71	77.00
	14	1290.15	6.71	62.00
	15	657.41	1.31	179.02
	16	1552.41	15.80	61.84

Results: Static mixer 1

130.475
-1.082
0.275
-0.291

#		d_32 SV	(micron)	d_32 corr (micron)	Error (%)
	1		134.90	126.63	6.13
	2		98.78	104.74	6.03
	3		81.70	84.41	3.33
	4		71.23	72.43	1.69
	5		59.54	64.33	8.03
	6		70.24	69.49	1.07
	7		80.90	75.47	6.71
	8		91.09	85.28	6.38
	9		107.47	107.14	0.31
	10		156.99	149.31	4.89
	11		113.00	108.48	4.00
	12		96.00	93.51	2.59
	13		77.00	76.44	0.73
	14		62.00	62.49	0.79
	15		179.02	197.49	10.32
	16		61.84	64.73	4.68

@ NWU®

CFD validation

- Which model will be used
- CFD setup
- CFD results

Separation validation

Membranes to the rescue!

65

Phase separation

- The chemical environment Solvent and Aqueous composition
- Factors that influence Phase Separation
- Hollow Fiber membrane contactors

Hybrid pertraction

Membranes to the rescue!

67