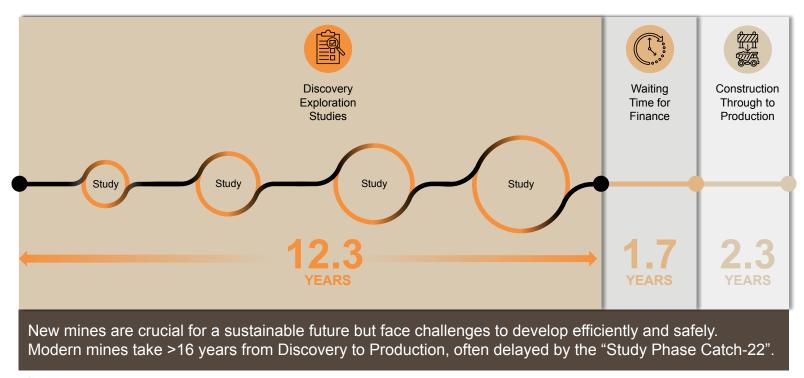
Breaking Free of the New Mine Development Catch-22 Charting a Path Forward

Matthew Schneider


idoba

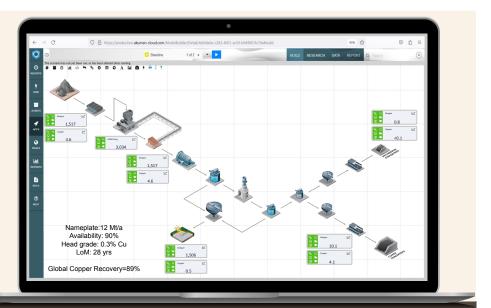
The challenge of developing new mines

ALTA

Long development timelines and specific mineral feasibility durations

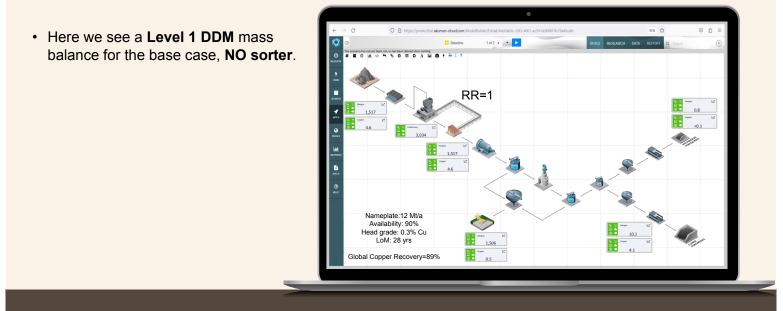
Gold, Lithium, Zinc and Nickel all have substantial feasibility times due to longer exploration and permitting.

On average, **Copper mines** have one of the longest exploration and discovery time frames, **roughly around 12.9 years**


What if we could streamline the discovery process and run multiple study scenarios simultaneously to optimise yield and operational efficiency?

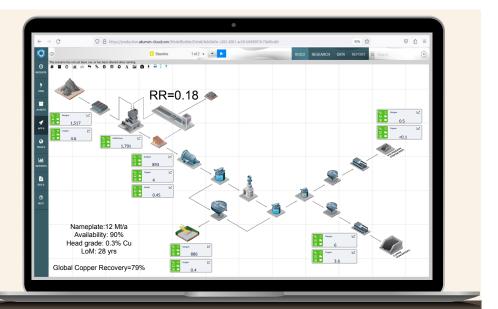
3

Optimising mineral processing with Akumen


- **Two-step process**: High-level mass balance model and techno-economic model for financial metrics.
- **Dynamic driver modelling**: Tailored for each operation using standard components and process inputs.
- **Goals**: Maximise copper recovery and gangue rejection, using partition coefficients and bond work index.

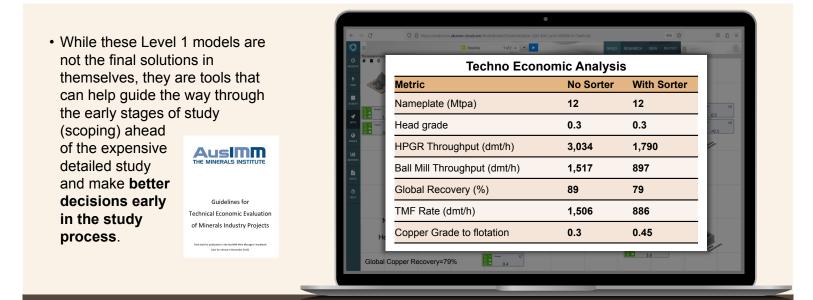
Analysis: Run "what if" scenarios with Akumen to explore trade-offs.

Scenario 1 | NO Ore Sorter (Units=dmt/h)


The recycle ratio around the HPGR is around 1 and the global recovery is 89%

5

Scenario 2 | WITH Ore Sorter (Units=dmt/h)


- In this With Sorter case we see coarse gangue being rejected from the ore sorter with some loss of copper.
- However, the size of the HPGR recirculating load is reduced by 80% which means the HPGR can be smaller.

Analysis: Run "what if" scenarios with Akumen to explore trade-offs.

The techno-economic analysis Ore Sorter trade-off

Lowering the capital ask like in this example can help break out of the 'Study Phase Catch 22'

The techno-economic analysis, Financial transparency

		•		
← → C Ø	A https://production.akumen-doud.com/Mode/Builder/Detail/Addde Baseline 1 of 2 •		90% 🟠 BUILD RESEARCH DATA REPORT Q S	© දු = serch (3)
The scenario has n # 0	Techno Economic Analysis			
4 NOA	Financial Metrics	No Sorter	With Sorter	
ASSESS	Cap Ex (Bn\$)	\$2BN	\$1.45BN	- ⊯ 0.5 - ⊯ ⊲0.1
PROES A	Op Ex (\$/t ore)	13	13	
DOCS DOCS HELP	IRR [pre-tax]	13%	16.1%	
He	NPV _{7%} [pre-tax]	\$1,350M	\$1,543M	
Global C	Copper Recovery=79%		3.6	and a second

Lowering the capital ask like in this example can help break out of the 'Study Phase Catch 22'

Final thoughts

- Modern mines take >16 years from Discovery to Production, often delayed by "Study Phase Catch-22"
- These new mines are crucial for a sustainable future, but face challenges to develop efficiently and safely
- By running "what if" scenarios:
 - better techno-economic trade-off decisions can be made earlier
 - decision makers and stakeholders are more engaged, leading to novel ways to break out of the 'Study Phase Catch 22'
 - leverage digital technologies to help solve the critical minerals shortage

idoba is reshaping mining with cutting-edge software products, our DiiMOS[™] platform and expert consulting. We help our clients intelligently navigate complex challenges, from boosting productivity to meeting ESG goals.

Mathew Schneider Matt.Schneider@idoba.com

Dr. Grant Wellwood Grant.Wellwood@idoba.com

