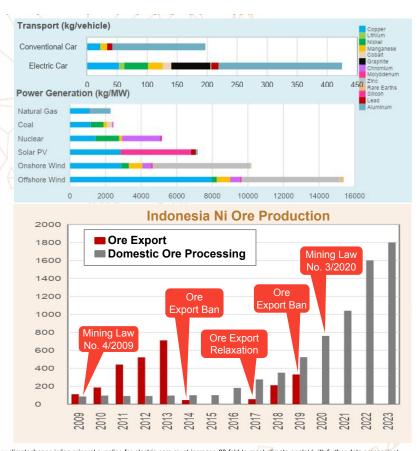
RECENT GROWTH OF NICKEL LATERITE PROCESSING IN INDONESIA

Taufiq Hidayat, Zela Tanlega, Zulfiadi Zulhan, Mohammad Zaki Mubarok, Edy Sanwani

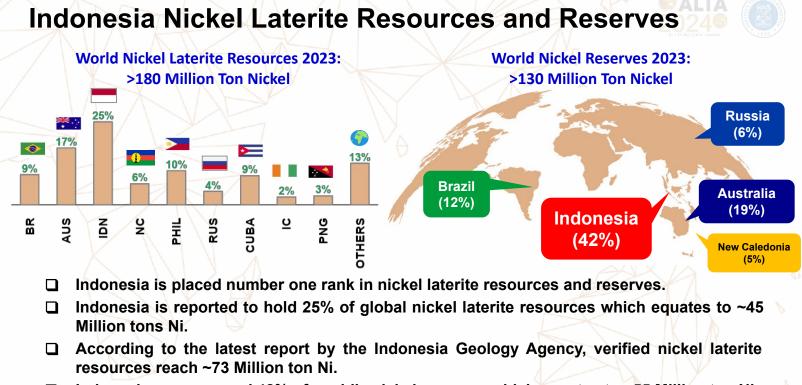
40

Metallurgical Engineering Research Group Institut Teknologi Bandung

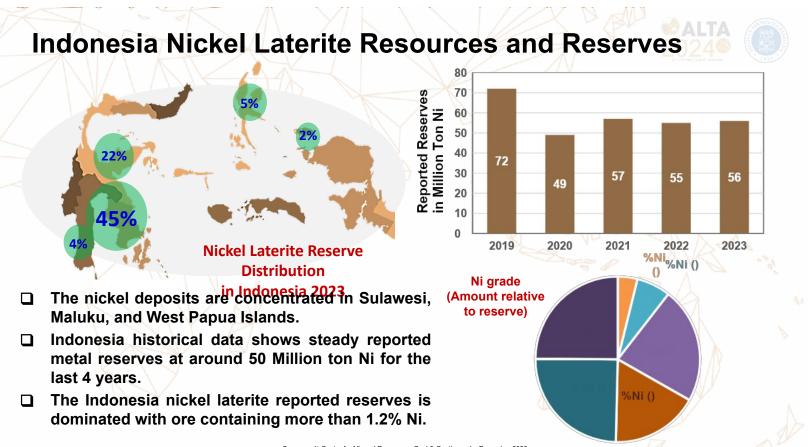
Indonesia



Content


- Indonesia Nickel Laterite Resources and Reserves
- o Indonesia Nickel Laterite Mineralogy
- o Nickel Laterite Mining in Indonesia
- o Nickel Laterite Processing in Indonesia
- Directions / Strategies of Indonesian Nickel Industry
- o Concluding Remarks

Background


- Nickel is vital element in electric mobility, renewable energy, and other strategic technologies.
- Indonesia has emerged as a major nickel producer in recent years due to the implementation of a nickel ore export ban policy, supported by massive foreign investment.
- Indonesia currently dominates nickel mining production representing more than half of the global supply.
- More than 50 nickel processing plants are in operation in Indonesia producing nickel intermediate products.

Sources: 1) https://www.climatechange.ie/iea-mineral-supplies-for-electric-cars-must-increase-30-fold-to-meet-climate-goals/ (with further data processing) 2) U.S. Geological Survey, 2024, Mineral commodity summaries 2024: U.S. Geological Survey, p 12., https://pubs.usgs.gov/periodicals/mcs2024/mcs2024.pdf

□ Indonesia owns around 42% of world's nickel reserves which equates to ~55 Million ton Ni.

Sources: 1) Centre for Mineral Resources, Coal & Geothermal – December 2023 2) Indonesia Geology Agency, Centre for Mineral Resources, Coal & Geothermal, Updating the potential, resources and reserves and nickel greenfield in Indonesia – May 2024

Indonesia Nickel Laterite Mineralogy

		Drofil				Compositio	n (wt%)	2		2
		Profil	Ni	Co	Cr	Aİ	Fe	SiO	MgO	SiO /MgO
All and a second se	~	0	0.340	0.070	3.30	8.00	45.44	2.29	0.05	45.8
		ete	0.280	0.062	3.40	0.00	39.69	1.57	0.05	31.4
the second is a second fight to be a fight of the second s	erricrete	5	0.480	0.088	8.50	11.70	47.04	1.79	0.05	35.8
Ferruginous cap	entrete	erricrete	0.540	0.091	3.40	11.50	<mark>48.</mark> 69	1.72	0.05	34.4
		ν Ľ	0.480	0.078	3.30	11.10	48 .22	1.51	0.05	30.2
	\sim		0.600	0.078	3.00	0.00	49,48	1.71	0.05	34.2
Limonite Limonite	• · · · ·		0.920	0.082	2.85	9.70	52.34	1.96	0.28	7.0
	(1)) >	1.110	0.086	2.85	8.90	51.11	2.05	0.05	41.0
	1	/ k 2	0.960	0.081	2.85 2.88	9.00	50.53 50.94	1.89 2.05	0.13 0.25	14.5 8.2
	- V	L & & 2	1.020	0.103	2.88	8.20	50.94	2.05	0.05	41.0
Saprolite			1.360	0.103	2.90	7.50	52.00	2.05	0.05	41.0
	Limonite	Limonite for	1.270	0.094	2.96	7.00	50 78	2.30	0.05	46.0
		<u> </u>	1,170	0.105	2.96	6.70	50.87	2.19	0.05	43.8
		I – 21	1.530	0.214	3.01	6.70	49 22	2.24	0.05	44.8
		হ	1.740	0.158	3.02	7.30	47,99	2.30	0.05	46.0
		L Î	1.440	0.260	2.98	7.20	48.56	2.20	0.27	8.1
		_	1.330	0 224	3.10	7.25	44.26	5.16	0.21	24.6
			1.630	0.261	3.05	6.60	43.49	7.32	0.93	7.9
	\sim	⊤ransition	2.020	0.211	3.20	6.70	45.96	5.54	2.45	2.3
Nickel laterite consists of		Transition	1.760	0.049	3.00	6.80	19.73	39.55	15.15	2.6
			1.900	0.032	3.25	7.20	14.24	43.09	20.91	2.1
different layers with different	o		1.870	0.042	3.00	6.80	17.57	36.27	21.59	1.7
unierent layers with unierent	Saprolite	崔 🚆	1.220	0.041	1.00	1.90	17,54	42.72	16.97	2.5
mineralogy.		Saprolite r Smelte	0.790	0.027	0.80		12.54	43.56	24.00	1.8
mineralogy.	_	ت <u>ج</u>	2.050	0.046	0.80	1.25	19.17	31.30	22.45	1.4
			2.040	0.039	0.81	1.30	16.96	B 1.53	24.91	1.3
Limonite and Saprolite are		ق ش	1.370	0.024	0.80	1.70 1.60	11.79	36.06	29.08 30.16	1.2
			0.250	0.014	0.81	1.60	8.34	39.61 39.55	32.23	1.3 1.2
valuable feedstocks for nickel	$\sim \sim$		0.560	0.013	0.80	1.30	7.51	39,19	33.88	1.2
			0.790	0.015	0.81	1.45	8.31	41 04	31.32	1.3
industries.			0.920	0.014	0.79		8.25	38.13	30.88	1.2
		Bedrock	0.680	0.014	0.80		7.85	39.04	33 73	1.2
D Due to the different are		ē	0.910	0.014	0.80	2.20	8.06	38.68	33.90	1.1
Due to the different ore	Bedrock	5	1.100	0.015	0.80	1.80	8.31	39.28	32.74	1.2
also yo at a via tiga different		l m	0.450	0.013 📕 /	0.65	1.50	8.00	36.00	32.00	1.1
characteristics, different			0.450	0.015 📕	0.50	1.00	7.00	39.00	36.00	1.1
			0.450	0.014	0.45	0.80	6.80	38.50	36.50	1.1
processing routes are required.			0.400	0.014	0.40	0.70	6.70	38.70	36.00	1.1
		1	0.350	0.014	0.40	0.75	6.50	38.30	36.60	1.0

Sources: 1) Choi Y, Lee I and Moon I (2021) Geochemical and Mineralogical Characteristics of Garnierite From the Morowali Ni-Laterite Deposit in Sulawesi, Indonesia. Front. Earth Sci. 9:761748. doi: 10.3389/feart.2021.761748. 2) M.F. Azim et al.. Geochemical and Physical Characteristics of Nickel-Cobalt Laterite Deposits on Maniano Island. Kolaka. Southeast Sulawesi: Proceedinos PIT IAGI 51st. 2022.

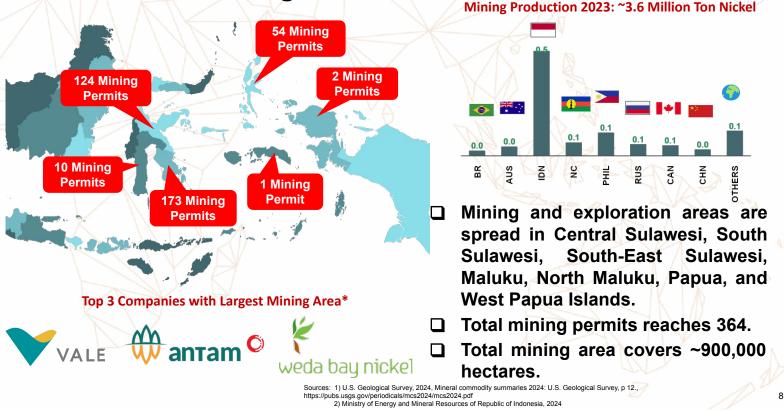
Indonesia Nickel Laterite Mineralogy

Chemical Compositions of Saprolite Ore

	Obi Island %	North Morowali-1 %	North Morowali-2 %	East Luwu %
Ni	1.70	1.79	1.99	1.68
Со	0.08	0.03	0.04	0.07
Fe	16.08	12.9	17.55	19.86
SiO ₂	32.9	47.3	35.39	36.46
Al ₂ O ₃		3.12	3.21	3.11
MgÕ	26.5	20.1	17.93	15.50
Mn		0.22	0.35	0.48
Cr		0.62	0.77	0.93
Ca	0.12	0.42	0.20	0.36
Moisture	35%	27%		

Chemical Compositions of Limonite Ore

			× 1				
	Obi Island %	North Morowali %	Bulong %	Cawse %	Murrin Murrin %	Moa Bay %	Taganito %
Ni	1.35	1.13	1.11	1.0	1.24	1.35	0.98
Co	0.17	0.11	0.08	0.07	0.089	0.12	
Fe	41.2	32.3	20.8	18.0	21.7	45	
SiO ₂	15.2	20.7	42.9	42.5	42.1	8.3	
AL	3.0	4.23	2.75	1.71	2.51	4.8	1.87
Mg	1.60	2.76	4.62	1.58	4.02	0.55	1.16
Mn	0.97	0.83	0.36	0.17	0.40		
Cr	1.0	1.69	0.6	0.92	0.88	2.0	
Ca	0.02	0.11	0.03	0.03	0.53		
Moisture		40%	<35%	<10%	~30%	>20%	
					Sources: 1) T. Gultom and A. Sianipar	High pressure acid leaching


Limonite Saprolite Goethite - FeO(OH H = Herhatite - Fe2O 35 = | 684 Ardite - Ma85i2O5(OH)4 125 30 45

Degrees (20)

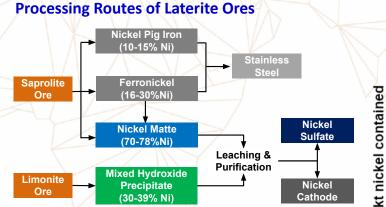

- Saprolite is dominantly composed of magnesium silicate minerals, such as serpentine – Mg₂Si₂O₅(OH)₄. Limonite is dominantly composed of iron oxide minerals, such as goethite - FeO(OH).
- The Cut-off Grade (COG) of the saprolite ore is 1.3%Ni and the average ore grade in pyromet plants feed is 1.6%Ni.
- The COG of limonite ore is 0.7%Ni with average Ni content in hydromet plants feed around 1.1%Ni.

ed technology in Indonesia. IOP Conf. Series: Earth and Em Nickel Laterite, Southeast Ophiolite Belt, Sulawesi Island, Ind e 413 (2020) 012015 IOP Publishing. doi:10 letallurgy & Exploration 37, 79–91 (2020). Sourom and A. Stanipar, High pressure acid leaching 2) Zhang, Y., Qie, J., Wang, X.F. et al., Mineralogical Chi. i.org/10.1007/s42461-019-00147-v as. Nickel '96. Kalgoorlie, 27-29 Nov 1996; 4) https://news.metal.com; 5)

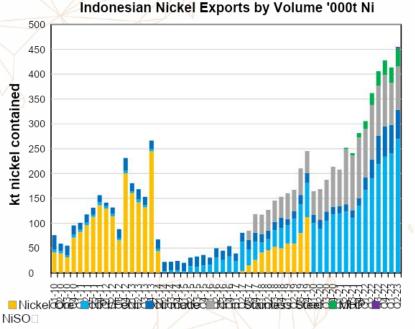
Nickel Laterite Mining in Indonesia

Nickel Laterite Mining in Indonesia

weda bay nickel pt sulawesi cahaya MINERAL (SCM)


Simplified Laterite Profile	Case 1. Mining for Smelter only
Limonite	Limonite is disposed as overburden
Saprolite	Mining Zone
Bedrock	Bedrock
Case 2. Mining for Hydromet only Saprolite is not utilized	Case 3. Mining for Smelter & Hydromet Best practice
Mining Zone	Mining Zone
Bedrock	Bedrock

- Prior to the availability of High-Pressure Acid Leaching (HPAL), limonite ore was disposed as overburden.
- The mining operation was mainly focusing on the saprolite ore for the Rotary Kiln-Electric Furnace plants.
 - With the availability of HPAL, total mining of saprolite and limonite ores is encouraged.


This optimized mining method lowers the production cost of limonite ore.

Nickel Laterite Processing in Indonesia

Trimegah Bangun Persada

- Dominant utilization of Saprolite Ore is for the production of Nickel Class 2 (NPI and FeNi).
- □ Indonesia contributed more than 75% of global NPI production in 2023.
- □ The utilization of Limonite Ore is for the production of Nickel Class 1 (MHP).
- Production of Nickel Class 1* in Indonesia reached more than 20% of total nickel products in 2023.

Nickel Class I = Ni matte, Ni hydroxide, Ni sulphate, electrolytic Ni, Ni powder, Ni briquettes, Ni carbonyl. Nickel Class 2 = NPI and FeNi. The product is used mainly in stainless steel production.

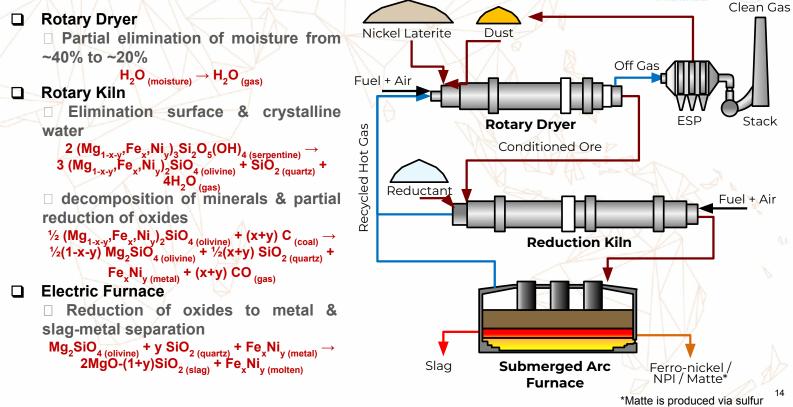
Sources: 1) A. Matano, Nickel laterite mining, 2019

	Example of Composition								
Element	Nickel Pig Iron	Ferronickel	Nickel Matte	Mixed Hydroxide Precipitate	NiSO₄·6H₂C				
Ni	10-15 %	16-30 %	70–78 %	30–39 %	> 22 %				
Fe	remaining	Remaining	< 4%	< 0.5 %	< 5 ppm				
S	0.40 %	< 0.05 %	~20 %	3–5 %					
Mn				4–9 %	< 5 ppm				
Mg				3–5 %	< 10 ppm				
Со	0.29 %	0.36 %	< 1 %	2–5 %	< 50 ppm				
Cu				1–4 %	< 5 ppm				
Zn				1–4 %	< 5 ppm				
Cr	0.55 %	0.08 %			< 5 ppm				
С	0.25 %	< 1.2 %							
Si	0.45 %	0.4 %			< 10 ppm				
Р	0.02 %	< 0.02 %							
Al				< 0.5 %	< 5 ppm				
Na					< 20 ppm				
Са					< 10 ppm				
Cd					< 5 ppm				
Pb					< 5 ppm				
H _a O				35–45 %					

Sources: 1) Taken from various data¹¹

Nickel Laterite Processing in Indonesia - Pyromet Plants

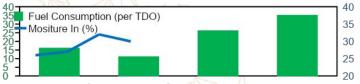
Sources: 1) Coordinating Ministry for Maritime Affairs and Investment - Republic of Indonesia, Industrialization of minerals in Indonesia now and in 12 the future, 2023


Pyromet Plants – Rotary Kiln-Electric Furnace (RKEF)

- Rotary Kiln Electric Furnace technology dominates the pyro processing of saprolite ore.
- There is a wide range of furnace capacities from as small as 18 to 80 Mega Watts.
- **G** Feed ore must be strictly controlled in terms of Ni content, SiO₂/MgO ratio, and Fe/Ni ratio.
- Most plants have dedicated power plants, while few procure electricity from the national grid.

13

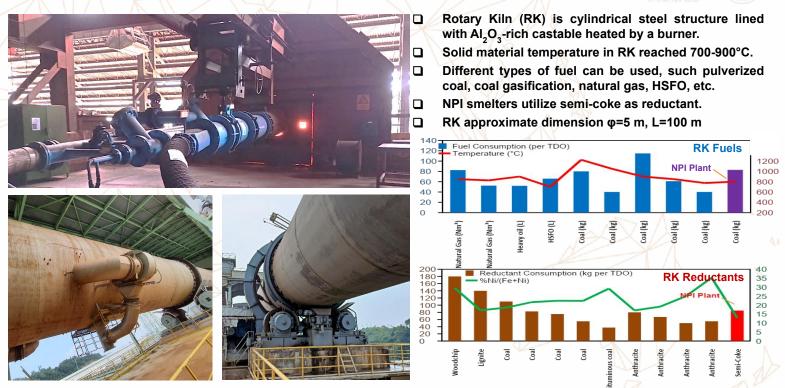
Pyromet Plants – RKEF : Process Flow


Pyromet Plants – RKEF : Rotary Dryer

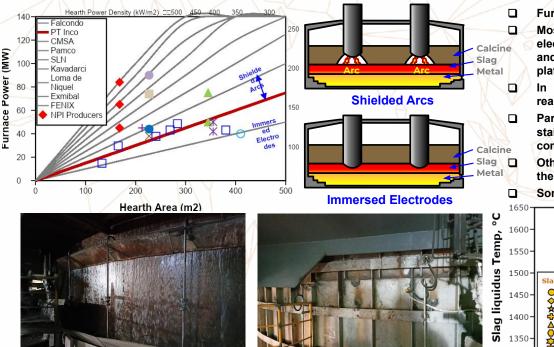
Rotary Dryer (RD) uses hot gas to dry wet ore.

Π

- Hot gas enters around 800°C and exits around 120°C.
- Different types of fuel (pulverized coal, natural gas, HSFO, etc) can be used to generate hot gas in boiler / stove / hot gas generator.
- Some NPI smelters reuse off-gas from Rotary Kiln and Electric Furnace as sources of hot gas.
- RD approximate dimension φ=5 m, L=50 m



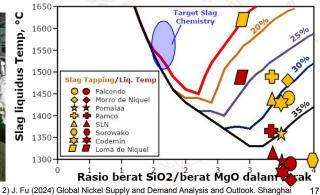
 Natural Gas (Nm³)
 HSFO (L)
 Coal (kg)


Sources: 1) A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, and A.V. Tarasov. JOM World Nonferrous Smelter Survey, Part III: Nickel: 15

Pyromet Plants – RKEF : Rotary Kiln

Sources: 1) A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, and A.V. Tarasov. JOM World Nonferrous Smelter Survey, Part III: Nickel: 16

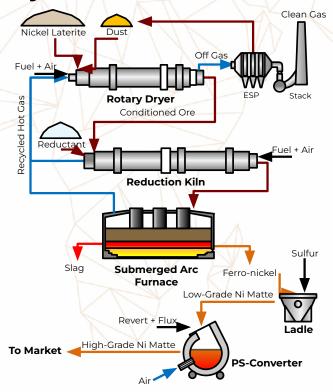
Furnace operating temperature around 1500°C.


Most NPI smelters operates in immersed electrodes to have a lesser power fluctuation and has simplified shell configuration without plate or finger copper coolers.

In 2023, the Indonesia total NPI production reached ~1.4 Million t-Ni/yr.

Part of the molten NPI is delivered to a stainless-steel plant within the industrial complex.

Other part of the NPI is shipped overseas in the form of ingots.


Some NPI has been converted to Ni matte.

Sources: 1) https://www.sec.gov/Archives/edgar/data/1322422/000119312509009939/dex99106.htm Metals Market Webinar

Brick only shell

Pyromet Plants – RKEF : FeNi to Matte

Spray cooling water-shell

- Prior to 2022, matte was only produced by PT Vale Indonesia at Sorowako site.
- Due to high nickel matte profit margin, several companies has shifted from initially producing NPI (Ni Class 2) to producing Ni matte (Ni Class 1).
- The shift has been done through the addition of sulfur into the alloy and performing converting process in PS-converters.
- □ In 2023, the total nameplate capacity of the matte conversion facilities reached ~285 kt-Ni/yr with utilization rate at ~55%.

Sources: 1) J. Fu (2024) Global Nickel Supply and Demand Analysis and Outlook. Shanghai Metals Market18 Webinar

Pyromet Plants – RKEF : Waste Management

- Significant waste generated at a smelter plant is slag. In case of NPI production, around 5 tons of slag is generated for every ton of metal product.
- Nickel slag is not considered as toxic and hazardous waste based on Indonesia Gov. Reg. No 22 Year 2021. This is confirmed by its TLCP* result which is below safe limit.
- The slag is commonly transported by trucks to an assigned dumping location where it is used as construction base for new plant area.

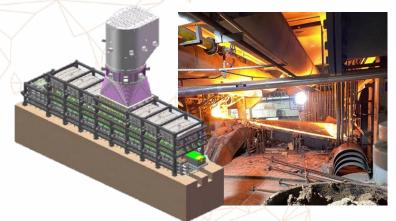
* Toxicity Characteristic Leaching ¹⁹

Plant Name	Location	Capacity, t Ni/yr	Year	Capex USD, millions	Unit Capex USD/t Ni/yr, thousands	Product
Onca Puma	Brazil	52,000	2011	3,200	62	FeNi
Barro Alto	Brazil	40,000 🗸	A 2011	1,900	48	FeNi
Koniambo	New Caledonia	30,000	2013	7,000	116	FeNi
Hengjaya Ni (TS/NIC)	Indonesia	16,500	2017	200*	12	NPI
Ranger Ni (TS/NIC)	Indonesia	16,500	2017	286*	17	NPI
Bahodopi (Vale/Tisco/Xinhai)	Indonesia	73,000	2025	2,200	30	FeNi

RKEF Project Data

* Not including power plant

Sources: 1) https://nickelindustries.com/carbon/wp-content/uploads/2021/04/3-10-2019-Presentation-to-Investors.pdf


2)
https://ala.com/in/w/financial.raeulte_3n22#~taxt=Tha%20nrniart%20aetimatar%20C&DEX%20ie 400%20million%20fnr%20tha%20mine

Pyromet Plants – Other Technologies

Blast Furnace (BF)

- □ BF is a conventional technology that has been utilized in Indonesia since the implementation of the export ban.
- Two BF plants are still in operation and four plants had been shutdown.
- Existing plants have total capacity between 100 and 500 kton Nickel Pig Iron / yr.

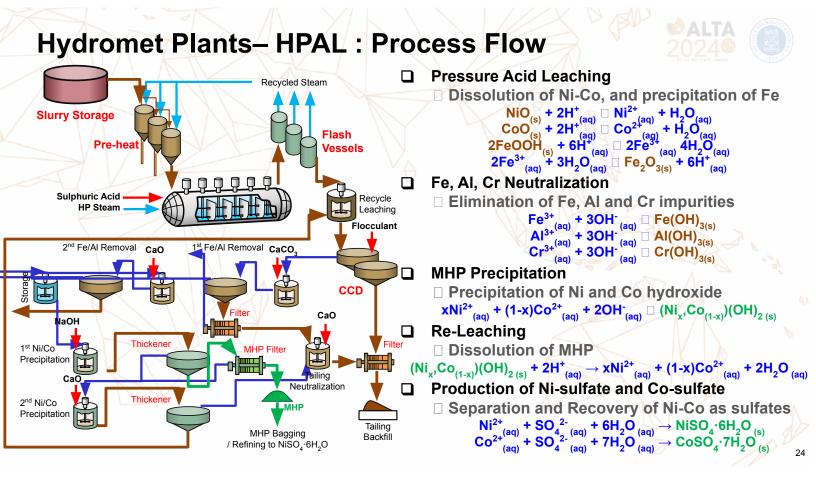
Oxygen-Rich Side-Blown Furnace (OESBF)

- OESBF is a new technology in Indonesia.
- One OESBF facility is already in operation and five OESBF facilities are under construction.
- Existing OESBF plant produces nickel matte product.
- Capital intensity of OESBF is claimed to be 9,000 USD/ton Ni/yr

Sources: 1) https://www.centralomega.com/id/release/news/progres-pembangunan-smelter 2) W. Yang (2023). Development and application of oxygen rich side blown bath melting technology for smelting high grade nickel matter in laterite nickel ore. Nickel and Cobalt Industry Chain Summit

Nickel Laterite Processing in Indonesia - Hydromet Plants

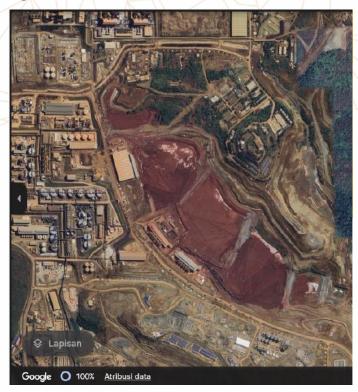
Sources: 1) Coordinating Ministry for Maritime Affairs and Investment - Republic of Indonesia, Industrialization of minerals in Indonesia now and in 22 the future, 2023


Hydromet Plants – High Pressure Acid Leaching (HPAL)

- High Pressure Acid Leaching technology dominates the hydro processing of limonite ore.
- It is only suitable for processing limonite (mainly goethite mineral) because of its low Mg content and high Fe content.

23

Let can extract Ni and Co with a higher dissolution rate in a shorter time and lower acid consumption,


Hydromet Plants- HPAL : Autoclave

- Leaching at a temperature of 240-270 °C (by steam injection), pressure 33-55 bar.
- The main leaching reagent is sulfuric acid.
- Performed in a titanium-lined autoclave ($\varphi = -5$ m, L=-40 m).
- Ni and Co recovery up to 95-96% can be achieved in just ±1 hour.
- Existing plants have 3-4 HPAL lines with capacity per line around 15,000 to 20,000 t-Ni/yr.
- Most plant is equipped with a dedicated sulfuric acid plant.
- The sulfuric acid plant produces residual steam which can be utilized for heating other process units and power generation.
- Indonesia total MHP production reached around 186 kt-Ni/yr in 2023.

Sources: 1) Indonesia Nickel Miners Association (2024) Indonesia's Nickel Strategy: Navigating Price Challenges And Sustaining Industry Growth. 25 2) https://www.kompas.id/baca/nusantara/2023/04/16/babak-baru-hilirisasi-nikel-di-pulau-obi

Hydromet Plants- HPAL : Waste Management

- Around 1.3 ton of tailing (dry basis) is generated for every ton of limonite processed.
- Three common tailing management methods for leaching waste:
 - Dry tailing storage
 - Storage in tailing ponds / dams
 - Deep sea tailing placement
- In Indonesia, deep sea tailing placement of HPAL tailing is not permitted by the Ministry of Environment and Forestry.
- The current practice for HPAL tailing handling in Indonesia is through dry tailing storage.

HPAL Project Data

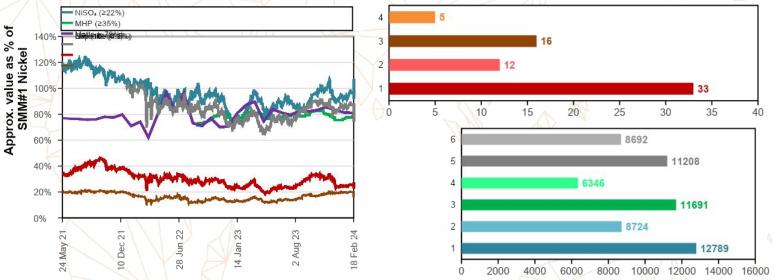
Plant Name	Location	Capacity, t Ni/yr	Year	Capex USD, millions	Unit Capex USD/t Ni/yr, thousands	Product	Ramp-Up
Coral Bay Line 1	Philippines	10,000	2004	180	18 🦴	MSP	Fast
Coral Bay Line 2	Philippines	12,000	2008	370	31 📎	MSP	Fast
Ravensthorpe	Australia	50,000	2008	3,900	78	MHP	Slow
Ramu	PNG	31,150	2011	2,100	67	MHP	Slow
Goro	New Caledonia	60,000	2012	6,000	100	MHP	Very Slow
Ambatovy	Madagaskar	60,000	2012	7,200	120	Metal	Slow
Taganito	Philippines	36,000	2013	1,700	47	MSP	Fast
Gördes	Turkey	10,000	2014	360	36	MHP	Slow
PT HPL Phase 1	Indonesia	35,574	2021	684	19	MHP	Very Fast
PT HPL Full Phase	Indonesia	55,875	2023	1,061	19	Sulfate	Very Fast
РТ QMB	Indonesia	50,000	2022	998	20	MHP	Very Fast
PT Huayue Nickel Cobalt	Indonesia	55,655	2022	1,230	22	MHP	Very Fast
PT Huafei Nickel Cobalt	Indonesia	120,000	2023	2,080	17	MHP	In-Progress
PT Obi Nickel Cobalt	Indonesia	65,000	2024	1,100	17	MHP	In-Progress

Sources: 1)

https://nickelindustries.com/carbon/wp-content/uploads/2021/04/3-10-2019-Presentation-to-Investors.pdf 2) Macquarie Research, CLSA 3) Global Mining Research, 2018

Hydromet Plants – Other Technology

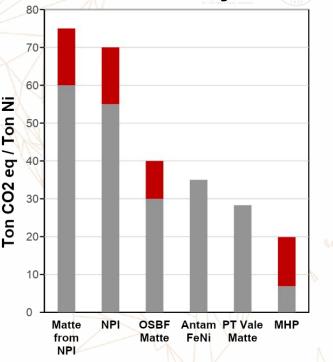
Step Temperature Acid Leach (STAL) Technology


- Process concept by PT Hydrotech Metal Indonesia
 - 1. Sulphation Roasting (In Rotary Kiln)
 - $\begin{array}{l} \text{NiO}_{(\text{s})} + \text{H}_2\text{SO}_{4(\text{aq})} \rightarrow \text{NiSO}_{4(\text{s})} + \text{H}_2\text{O}_{(\text{g})} \\ \text{Fe}_2\text{O}_{3(\text{s})} + 3\text{H}_2\text{SO}_{4(\text{aq})} \rightarrow \text{Fe}_2(\text{SO}_4)_{3(\text{s})} + 3\text{H}_2\text{O}_{(\text{g})} \\ \text{At T > 600 °C : Fe}_2(\text{SO}_4)_{3(\text{s})} \rightarrow 3\text{SO}_{3(\text{g})} + \text{Fe}_2\text{O}_{3(\text{s})} \\ \text{NiO}_{(\text{s})} + \text{SO}_{3(\text{g})} \rightarrow \text{NiSO}_{4(\text{s})} \end{array}$
 - 2. Water Leaching (In Leaching Tank) NiSO_{4(s)} + H₂O_(I) \rightarrow NiSO_{4(aq)} + H₂O_(aq)
- □ A similar concept has already been applied commercially for processing REE concentrates.
- □ The advantage of this process is that it operates at atmospheric pressure and its efficiency is not affected by the profile of the laterite ore.
- ☐ The application of this concept is already in pilot plant stage and is seeking opportunities to move to the commercial stage.

STAL Technology's Pilot Plant

Sources: 1) https://hydrotechmetals.com/ 2) https://staltechnology.com/stal_technology²⁸

Ni Payability, Selling Price and Cash Cost of Various Products



- Between 2021-2024, the Ni payability in ore is between 10-40%.
- The Ni payability in NPI dropped to 69% in December 2022 and rose back to around 70% in June 2023.
- The Ni payabilities in Nickel matte and MHP have been steady at around 80%.
- NiSO₄ is always highly priced with Ni payability fluctuates around 80 and 120%.
- Some of miners and processors in Indonesia maintain positive margins amidst drops in nickel prices.

Sources: 1) https://www.metal.com/Nickel 2) Indonesian Central Statistics Agency. Accessed 2024

Directions / Strategies of Indonesian Nickel industry

- Several strategies are already implemented / being tested to reduce emissions in nickel industry in Indonesia including:
 - Implementing heat recovery solutions to reduce coal consumption;
 - Use of biomass and biocarbon as a coal replacement;
 - Use of biofuels to reduce the emissions of vehicles and stationary equipment;
 - Use of conveyor belts or slurry pipeline for material transport to minimize vehicle emissions and dust pollution from material transportation;
 - Minimizing dependency on coal-fired power plant through O substitution of energy source / power plant fuel;
 - Reducing the use of limestone;
 - Using electrification for transport vehicles;
 - Increasing efficiency of processes, machinery, and equipment.
- In addition, it is worth noting that the ore export ban policy also contributes to minimizing the carbon footprint associated with the transport of the low-grade ore materials.

Sources: 1) McKinsey cite in T. Nugraha (2024) Evaluation of the Implementation and Development Direction of Nickel Downstreaming. Coordinating Ministry for Maritime Affairs and Investment of the Republic of Indonesia 2) https://www.cdn.imo.org/localresources/en/OurWork/Environment/Documents/SecondIMOGHGStudy2009.pdf: 3)

https://tbpnickel.com/sustainability/climate-change/greenhouse-gas-emissions;

29

Concluding Remarks

- Indonesia has experienced significant growth in nickel laterite processing, driven by strategic initiatives.
- The government's policies, such as the nickel ore export ban, have attracted substantial foreign investment.
- The policies lead to the establishment of numerous nickel processing facilities. As a result, Indonesia has become a dominant player in global nickel production.
- Future government's supportive policies, coupled with innovative practices and research, will aim to ensure the sustainable operation and development in Indonesia nickel industry.

THANK YOU FOR YOUR ATTENTION

Metallurgy Engineering Research Group Faculty of Mining and Petroleum Engineering Institut Teknologi Bandung Jalan Ganesha No. 10, Bandung - 40132, Indonesia Phone : +62 22 2502239 Fax : +62 22 2504209

t.hidayat@itb.ac.id www.metallurgy.itb.ac.id