Producing high-purity Nickel and Cobalt

Application of ion exchange resins

Johanna van Deventer

Purolite, South Africa johanna.vandeventer@purolite.com

Agenda

- 1. What is the aim of treatment?
- 2. Matching the target metal with the correct ion exchange resin
- 3. Design configuration
- 4. Resin characteristics (mechanical) to suit the design
- 5. Conclusions

What is the aim of the treatment?

Ion exchange resins in hydrometallurgy

Bulk recovery

Ion exchange resins are used to recover the main metal of interest

Impurity removal

Ion exchange resins are used to remove low levels of impurities from a high-concentration background GoldUranium

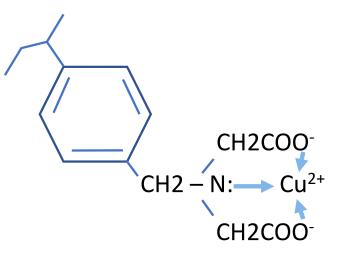
High purity CoSO4 crystals
 Nickel metal

What do we want from the resin?

- High selectivity for the target metal of interest
- Good rejection of other components
- High capacity
- Low leakage
- Ease of elution
- Robust to ensure a long life

O 2 Choosing the best resin for the task

Choosing the right resin (chemistry)


Impurity	Type of resin	Commercial examples					
Uranium	Strong base anion exchange	Purolite MTA8000 Dow Ambersep 4400					
Copper and Zinc	Amino-methyl phosphonic acid Iminodiacetic acid D2EHPA-impregnated	Purolite MTS9500, Lanxess TP260 Purolite MTS9300, Lanxess TP207 Purolite MTX7010, Lanxess OC1026					
Cadmium	Amino-methyl phosphonic acid D2EHPA-impregnated Thiourea	 Purolite MTS9500, Lanxess TP260 Purolite MTX7010, Lanxess OC1026 Purolite MTS9140, Lanxess TP214 Dow M4195 Purolite MTS9600 Lanxess TP220 					
Nickel	Bis-picolyl amine						

Chelating resins

Chela: a latin word for pincers

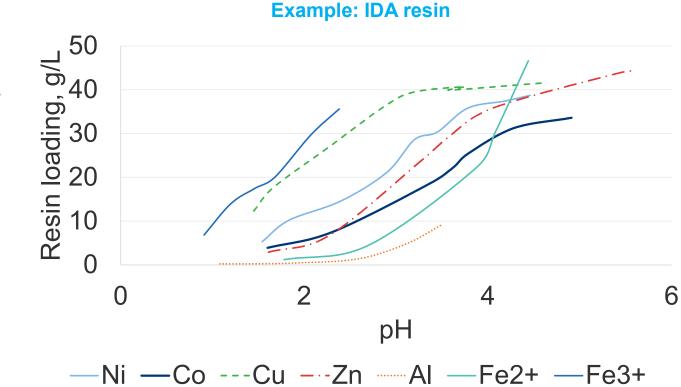
Iminodiacetic acid (IDA) resin

Combination of

- ion exchange
- electron pair sharing

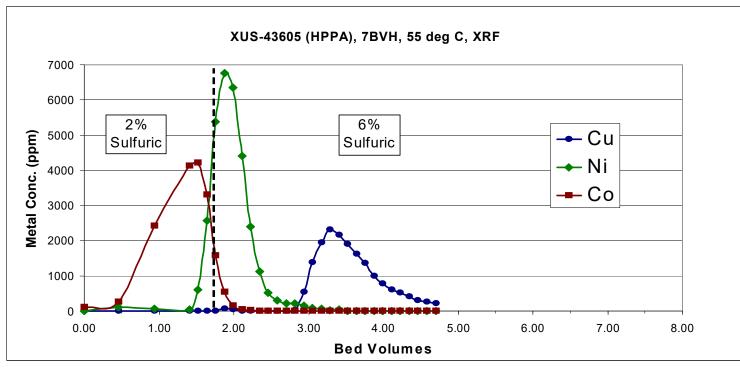
Chelating Resins: Selectivity range

Example: iminodiacetic acid (IDA) resin


Selectivity:

 $Fe^{3+} > AI^{3+} > Cu^{2+} >> Ni^{2+} > Cd^{2+} > Zn^{2+} > Co^{2+} >> Mn^{2+} > Ca^{2+} > Mg^{2+} > Na^+ \sim Li^+$

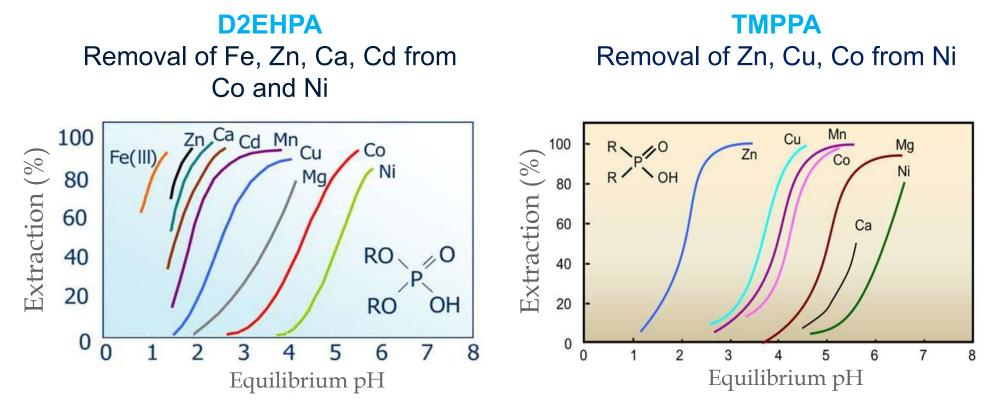
- Iron should be removed prior to IX
- Good selectivity over alkaline earths (magnesium and calcium)
- Good selectivity over alkali metals (sodium and lithium)


Chelating Resins: Selectivity vs pH

- Resin loading is dependent on the pH of the solution
- pH control is critical

Chelating Resins: split elution

- Additional separation can be achieved during elution
- Less strongly held metal (Co) eluted first with lower concentration acid
- Cu (more strongly held) requires more concentrated acid


Marston et al, Alta Metallurgical Conference 2010

Marston et al, Alta Metallurgical Conference 2010

Solvent-impregnated resins

- Organic solvent incorporated into ion exchange resin
- Has <u>physical</u> characteristics of an ion exchange resin
 - Reactor design/engineering as for fixed bed ion exchange systems
- Has <u>chemical</u> characteristics of the solvent:
 - selectivity range
 - pH dependence
- Application: production of high-purity liquors

Solvent-impregnated resins

Dr Kathy Sole, Alta 2018, keynote address

A note of caution

- Published graphs are generated with all components in equal concentrations
- Real solutions have vastly varying concentrations

For example:

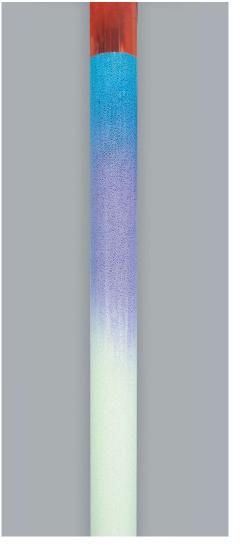
- ➢ 50 mg/L Cu and 50 g/L Ni
- ≻ Ni:Cu = 1000
- Both selectivity and pH dependence is affected by the relative concentration of elements
- Test work in the specific matrix is essential to establish relative metal loading

Ion exchange reactor design

The choice of IX contactor design is based on the solids content of the feed

Solids content Clear liquid, < 1 ppm solids Liquid with some solids, <500 ppm Pulp, 10 – 50 % solids Ion exchange reactor Fixed bed column Fluidised bed column Resin-in-pulp (RIP) - agitated vessels

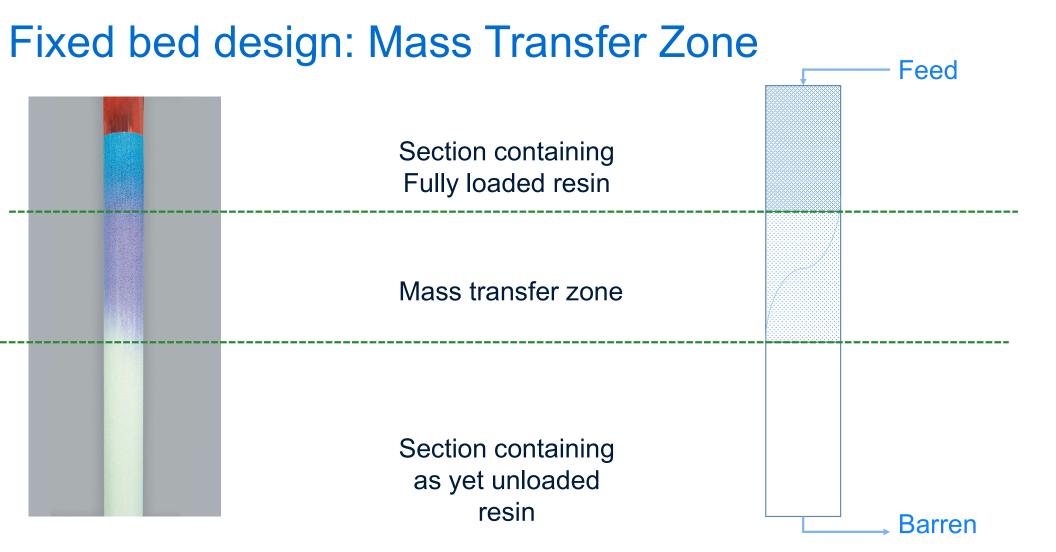
Fixed bed design


- Best for impurity removal tasks
- A fixed or packed bed of resin, i.e. no movement/fluidisation of the resin during forward flow conditions
- Theory: the resin bed is divided into an infinite number of horizontal plates, each having a different concentration than the plate above and below it
- > A concentration gradient is established across the vertical of the resin bed
- > This ensures very low leakage to the Barren liquor

Resin selectivity at work

Feed liquor: 4 g/L cobalt 0.2 g/L copper Sulphate salts

Downflow


MTS9500 (AMP resin)

Resin is fully loaded with blue copper

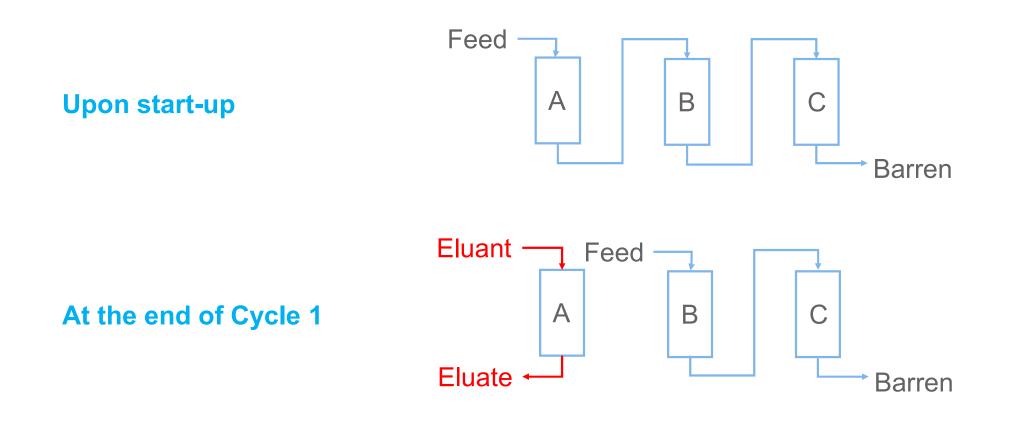
Purple, showing a mixture of blue copper and pink cobalt loaded onto the resin

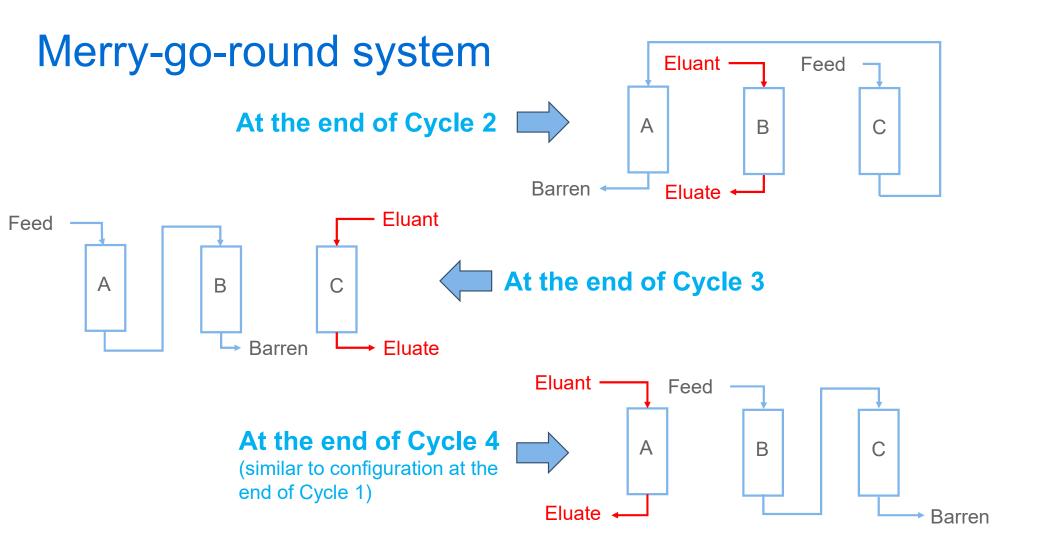
Beige, similar colour as fresh resin, no metals have loaded onto this portion yet

Fixed bed design: options

Continuous operation is most efficient Ion exchange operates in a batch-continuous manner:

Continuous sorption – stop – continuous elution – stop


Multi-column systems approaches continuous operation


- 20 to 30 columns
- Each receiving a different liquor (Feed solution, washwater, eluant)

Merry-go-round or lead-lag-lag system, 3 columns in series

- Offers flexibility
- Simpler and cheaper

Merry-go-round system

Merry-go-round system: advantages

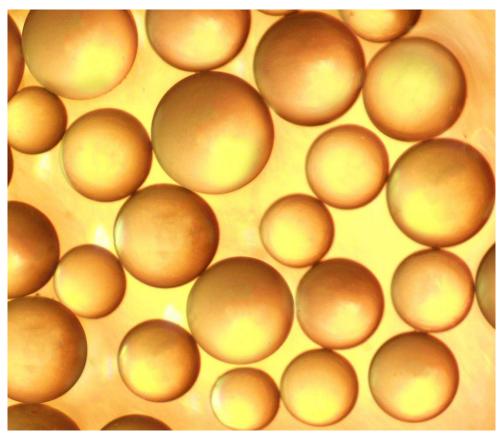
Ensures maximum resin capacity utilisation on the first column

Ensures low leakage from the last column

Merry-go-round system: advantages

Ensures maximum resin capacity utilisation on the first column

- Low resin volume
- Smaller plant, smaller footprint = low capex
- Reduced reagent consumption = low opex


Ensures low leakage from the last column

- A polishing zone is maintained at the outlet
- Ensure specification of final product is met
 - o final product fetches high price
 - Avoid penalties for low quality

OA Resin characteristics to suit the design

Choosing the right resin (mechanical)

- Particle size distribution
- Mechanical strength

Choosing the right resin: particle size distribution

A small particle size ensures fast kinetics BUT also causes high pressure drop across a column

Standard grading: 300 to 1200 micron

Narrow size distribution: 600 to 800 micron

- Uniform kinetics all resin beads participate equally
- Low pressure drop

Choosing the right resin: physical strength

Causes of resin attrition

- Physical handling
 - o pumping,
 - $\circ~$ transfer between vessels
- Osmotic shock
 - $\circ~$ swelling and shrinking due to exposure to different liquors

Physical strength can be measured in various ways:

- Breaking weight: typically >500 g per bead
- Russian Ball Mill parameter: >92% perfect beads after 6 hours of milling
- Critical in resin-in-pulp (RIP) systems
- Less critical in fixed bed operations

Choosing the right resin: mechanical

IX resins typically last 3 to 5 years Annual top-up of 5 to 10% required Complete replacement of the inventory at the end of life

How to take care of the resin:

- Minimise physical handling
- Minimise temperature shock
- Inspect vessel internals regularly to prevent losses

CONCLUSIONS

Conclusions

Ion exchange can be used in a wide range of application

- Bulk recovery of target metals
- Removal of impurities to low ppm, even ppb, levels

Different resins are used to target specific impurities

- selectivity range
- pH dependent
- affected by relative concentrations of elements

Considerations: ion exchange

- What is the target metal(s) or impurity
- > Matrix, e.g. acidic (sulphate, chloride, etc) or alkaline (cyanide, sodium carbonate, etc)
- Solution pH
- Recovery from pulp (RIP), clear solution (fixed bed) or 'dirty' liquors (fluidised bed)
- Presence of competing ions (which ions, relative concentrations)
- Solution temperature
- Integration with other unit operations, i.e. choice of elution reagent is often dictated by requirements/limitations of downstream processes
- Environmental limitations, e.g. use of sodium