

DESIGN OF CRYSTALLISATION PLANTS FOR THE PRODUCTION OF BATTERY GRADE LITHIUM PRODUCTS

Katherine Lombard – Technical Sales Manager

+27 72 419 6075 | klombard@jordproxa.com | jordproxa.com

Design Aims and Approach

• PURITY - Free from impurities

• SUSTAINABILITY - Low carbon footprint

• VALUE - High ratio of performance / cost

Design Approach

- Maximise purity
- Maximise yield
- Minimise CAPEX and OPEX costs
- Ease of operation with robust design

Evaporator / Crystalliser Fundamentals

EVAPORATION

- Produces a concentrate for discharge or further treatment
- Recovers clean water
- Handles tough liquors that biological and membrane treatment cannot handle

CRYSTALLISATION

- Thermal: Recovers clean water and solid waste or a usable product.
- Cooling crystallisation: recovery of a specific component
- Purification steps

FALLING FILM EVAPORATOR

- Liquor re-circulated to top of heat
 exchanger
- Liquor heated as it falls as a film on inside of tube
- High heat transfer rates
- Low space requirements
- High turndown capability
- Not suitable for crystals or scaling liquors

FORCED CIRCULATION- THERMAL

FORCED CIRCULATION- COOLING

Purity

- Very low concentrations.
- Up to 3 nines LHM required $(99.9\% \text{ exd. CO}_3)$.
- Future LHM purity may require as high as 4 nines (99.99% at < 100 total ppm impurities exd. CO₃).

Case Study

<u>Feed basis</u>: Lithium sulphate **PLS** generated from traditional β -Spodumene sulphation route.

Range of main impurities presented in table below on a 10 g/L Li basis:

Component	Unit	Typical	Good	Excellent
Na	g/L	6-8	6	5
SO ₄	g/L	70-80		
К	g/L	0.7-0.9	0.6	0.3
Cl	mg/L	< 100	70	< 40
Si	mg/L	10-20	10	< 5
Other typical trace level impurities include Ca, Mg, Cs, Zn, Al +				

Conclusions

CONCLUSIONS

- The requirements for LHM product purity are becoming ever more stringent.
- Well defined empirical impurity entrainment models along with test work validation helps us develop a robust flow sheet that can meet the desired product purities.
- JordProxa has expertise in the design of the flowsheets that can produce Ultra Pure LHM product with the current 3-nines and the future 4-nines purity from a variety of different feed compositions.

Katherine Lombard +27 72 419 6075 | klombard@jordproxa.com | jordproxa.com