Comply or Collapse

THE DILEMMA FACING THE LITHIUM-ION BATTERY INDUSTRY

Adrian Griffin

Future Technology Trust

ag@esg-energy.com.au

Future drivers of the battery industry

- The drive towards net zero has produced a plethora of policy and legislation.
- Although reporting of sustainability is now a requirement in the EU, somewhat ironically "sustainability" is not defined in the legislation.
- Interaction of various Acts and policies points to a common sustainability factor: carbon footprint.
- Progressive introduction of compliance will probably result in a practical definition of "sustainability" by 2026.

Warning

Low recovery of spodumene form Australian pegmatite operations poses a real sustainability compliance risk for marketing concentrates, lithium chemicals, or downstream products, manufactured from Australian spodumene.

Europe spearheads the move to lithium sustainability

Let's take a look as the major policies

Rate of policy introduction

EU Battery Regulations, May 2023

5

EU Sustainability Reporting (ESG regulations)

- Corporate sustainability directives (CSRD) require large EU companies and publicinterest entities to disclose information on their annual ESG performance.
- Reporting requires upstream and downstream supply chain impacts to be assessed.
- Sustainable Finance Disclosure Regulation (SFDR) and the Taxonomy Regulation, require disclosure of the sustainability characteristics of investment products, to assist end investors in making more informed investment decisions.
- EU Carbon Border Adjustment Mechanism (Oct 2023) will attempt to level the impacts of environmental supply chain sensitivity.
- Suppliers into the EU to comply as though they were EU companies.
- 4000 Australian companies require compliance.
- Spodumene producers and subsequent products to be affected.

EU Carbon Border Adjustment Mechanism Oct 2023

of certificates each year.

weekly ETS allowances.

#EUGreenDeal

can be deducted

Global Carbon Pricing

Australian climate policies will be dictated by foreign powers. Revenue from taxes to go offshore.

EU Battery Regulations, May 2023

- All batteries collected must be recycled.
- Today 30% of battery mass and 40% of EVs must be sourced from within EU/UK; rising to 45/60% by January 2024.
- Likely 80,000tpa recycled lithium carbonate equivalent required to meet EU mandatory requirements by 2030.
- Globally, recycled lithium is set to make up around 10% of the lithium supply in 2031, rising to over 20% in 2036 (Benchmark).

EU Battery Passport May 2026

Passport to carry digitally recorded battery data and history

- Battery type & unique identification (manufacturer, serial number etc).
- Date of manufacture and sale.
- Chemical composition including list of toxic substances.
- Recycled raw materials contained in the battery.
- Information and activities related to repair, reuse and dismantling.
- End-of-life treatment, recycling and recovery methods.

EU Regulations 2028 full LCA CO₂ reporting

How is the battery industry being managed in the USA?

Policies are clearly focused on securing supply, developing domestic battery production capability, reducing emissions and getting on top of inflation.

USA – reinforcing the National Battery Blueprint

The Biden Battery Blueprint

1 Secure access to raw and refined materials and discover alternates for critical minerals for commercial and defense applications

2 Support the growth of a U.S. materials-processing base able to meet domestic battery manufacturing demand

3 Stimulate the U.S. electrode, cell, and pack manufacturing sectors

4 Enable U.S. end-of-life reuse and critical materials recycling at scale and a full competitive value chain in the U.S.

5 Maintain and advance U.S. battery technology leadership by strongly supporting scientific R&D, STEM education, and workforce development

Source:https://www.energy.gov/eere/vehicle s/articles/national-blueprint-lithium-batteries

- The USA National Blueprint for Lithium Batteries is strongly supported by the Inflation Reduction Act, 2022.
- The IRA provides a framework of subsidies, grants and tax breaks to stimulate the clean energy industry.
- The IRA is heavily oriented towards developing domestic supply chains, stimulating the battery industry and providing tax incentives
- The IRA requires that EV manufacturers source 40% of critical battery minerals domestically or with free trade partners by 2024 increasing to 80% in 2026. This strongly favours the use of Australian sourced lithium.

Process problems and potential solutions

If we don't act, Australia will squander a once in a century opportunity

A move towards lithium sustainability

- Sustainability evaluations must cover the entire supply chain including mining, concentration, transport, conversion etc. BUT there is no substitute for maximizing the recovery of contained lithium units within an orebody.
- Downstream improvements include:
 - Minimising transport impact,
 - Using renewable energy,
 - Recycling product.
- We must strive towards maximising the value of our resources and to do this we need to maximise recovery.
- The lithium industry has arisen by amalgamation of legacy technologies, but the time has come to design production systems fit for purpose.

The spodumene carbon footprint problem

- Historically Australian spdoumene production has been geared towards the requirements of the Chinese spodumene converters.
- Stage 1 of conventioanl chemical conversion is counter-current roasting in rotary kilns.
- The critical particle size for kiln throughput is generally around 75μm.
- An enormous amount of the carbon footprint to produce spodumene concentrates is expended on the mining, comminution and rejection of material that cannot meet converter specifications.
- A disproportionate quantum of the carbon footprint must then be assigned to the commercial concentrate.
- Material reporting to tailings is notionally assigned a zero carbon footprint.

Solving the recovery problem – reducing CO₂ footprint

Recovery from ore to commercial concentrate (%)

Source: historic data c 2018

What needs to be improved?

Source: Fosu, A.Y. et al. Physico-Chemical Characteristics of Spodumene Concentrate and Its Thermal Transformations. Materials **2021**, **14**, **7423**. https://doi.org/10.3390/ma14237423

ALTA 2023®

What's in the sample?

- Sample from Pilbara region of WA.
- Mass yield from ore to concentrate 85%.
- Only about 40% of the concentrate exceeds a particle size of 75µm.

What's happening elsewhere?

- Recoveries to concentrate as low as 30%
- CO₂ footprint of resulting commercial concentrates very high.
- Discarded fines ultimately being exported carry a zero CO₂ production footprint.

Two promising solutions to the problem

Lithium Australia's caustic conversion – LieNA® and Calix & Pilabara Minerals' flash calcination

Alternative #1 – Lithium Australia - LieNA® process

- LieNA[®] is a caustic conversion process.
- Requires no roasting.
- Ideally suited to fine and low-grade spodumene.
- Capable of recovering lithium from any form of spodumene but best for material not suited to conventional conversion.
- Developed in conjunction with ANSTO.
- Partially funded through Australian government grant (CRC-P).
- Pilot plant commissioning August 2023
- Choice of end product carbonate, hydroxide, phosphate etc. with potential to feed directly into LFP cathode production.
- Lithium phosphate output preferred to minimize carbon footprint (elimination of energy intensive evaporation).

LieNA[®] comparison with conventional conversion

Alternative #2 – Calix flash calcination

- Like LieNA[®], the Calix' flash calcination process is focused on maximizing the commercial recovery of lithium from spodumene deposits.
- The process is being developed as a JV between Pilbara Minerals and Calix.
- Advantages:
 - As a process addition, it aids in optimizing the recovery of mined lithium units.
 - Electrically powered, it has potential to utilize renewable energy and reduce carbon footprint.
 - High conversion rates from α to β spodumene.
 - Lithium recoveries > 90%
 - Can take advantage of the expanding market for lithium phosphate materials.
 - -8-10 fold reduction in shipping mass if the process is established next to the spodumene concentrator.
 - Production of high-value lithium salt, close to the spodumene source, will retain more value for local producers and reduce the carbon footprint of the final consumer product.

Alternative #2 – Calix flash calcination

Source: Calix

Conclusion – dodging the bullets

A wakeup call to the industry to improve sustainability and profitability

Conclusion

- Australian lithium products are in danger of being alienated from EU markets on the basis of Australia having no domestic carbon tax and spodumene concentrate producers having a high carbon footprint.
- Foreign companies are seizing the opportunity and buying fine Australian spodumene which can be accounted for as having a zero production carbon footprint. It can also be marketed as a recycled product.
- Utilising the fine spodumene to fill surplus installed battery production capacity can open the EU markets to offshore entities and impede Australia's ability to capitalize on the current opportunity.
- Without addressing the sustainability issues in the lithium supply chain, Australia will be restricted to US and Chinese markets.
- Advanced technologies can alleviate the sustainability compliance issues faced by Australia and maintain competitive access to all markets – LieNA[®] and Calix.
- The Australian government needs to work with the lithium industry to implement policies addressing competitive pressures in international markets.

