ESTIMATING RESOURCE AND OPTIMISING PRODUCTION IN ISR AND BRINE MINING USING NUCLEAR MAGNETIC RESONANCE

Nick Jervis-Bardy

Orica - Digital Solutions

Hydrogeology in ISR and Brine Mining

Porosity and Permeability From Wireline Data

Porosity and Permeability

Porosity: Percentage of void space in a rock. It is defined as the ratio of the volume of the voids or pore space divided by the total volume.

Permeability: measure of the ease of passage of liquids or gases or specific chemicals through the material.

Hydraulic Conductivity / Transmissivity: aquifer properties calculated from permeability, aquifer extent and fluid properties.

low porosity impermeable

unconnected pore spaces

medium porosity impermeable

connected pore spaces

high porosity permeable

Importance in ISR and Brine Mining

Porosity

- Define resource explicitly (Brine Mining)
- Inform the volume and chemistry required to effectively mine (ISR)
- Calculate dry bulk density for resource calculations (ISR)

Permeability

- Quantify Production rates
- Inform Infrastructure decisions: well spacing, pump sizing, pipe sizing ...

⁽Lagneau et al, 2019)

Traditional Techniques

Core Analysis

- Physical lab tests can be performed to measure core scale porosity and permeability
- Packer (Drill Stem) Testing
 - Isolate Specific well sections using inflatable packers.
 - applying a constant hydrostatic pressure measured at the ground surface, and monitoring the water flow into the formation over time

Pump Testing

- Similar to packer testing.
- Extract/inject water from/into a completed well and measure its effect on nearby wells

Packer Test Example (Left). Grain volume apparatus (Bottom Left), pore volume apparatus (Bottom Right)

How to Estimate Porosity Downhole

ΤοοΙ	Porosity Relationship	Additional Information	Drawbacks
Gamma-Gamma Density	$\boldsymbol{\rho_{bulk}} = \phi \rho_{fluid} + (1 - \phi) \rho_{matrix}$	Fluid, matrix density	Requires active radiation source Spurious results in gamma producing zones
Resistivity	$\frac{R_t}{R_w} = a\phi^{-m}$	a, m, fluid resistivity	Constants formation specific
Sonic	$\frac{1}{v} = \frac{\phi}{v_{fluid}} + \frac{(1-\phi)}{v_{matrix}}$	Velocity of fluid and matrix	Matrix velocity often formation specific
Neutron	logØ ∝ <i>Neutron Count Rate</i>	Salinity Formation chemistry	Requires active radiation source Complex tool dependent relationship, clay effect
Borehole Magnetic Resonance (BMR)	$\phi = \sum T^2$	Salinity if very high	Sensitive to magnetic / conductive / chargeable material

How to Estimate Porosity Downhole

How to Estimate Permeability Downhole

- Any measure of porosity can be used to estimate permeability empirically.
 - Generally: $\log k \propto \emptyset^b$
 - Limited by understanding of local lithology, chemistry and geometry
- Petrophysical Approach using the Kozeny-Carman Relationship that describes pore space as a bundle of independent, tortuous tubes of different radii.
 - Can be leveraged to estimate permeability using results from BMR.

Generalised Poro-Perm relationships Nelson PH (1994) Permeability-porosity relationships in sedimentary rocks.

Nuclear Magnetic Resonance

Science and Application

NMR BASICS

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong static magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus.

2. Excitation

Radio

frequency

pulse

Atoms interact with a magnetic field

Magnetised atoms are excited using electromagnetic radiation

Excited atoms resonate and emit a detectable signal

NMR and Pore Interactions

Porosity, Cutoffs, and Fluid Volumes

- Total area under T2 represents the total porosity.
- Pore geometry information in magnetic resonance comes from surface relaxation effects.
- Driven by two properties
 - Pore geometry
 - Surface relaxivity
 - Variations in surface relaxivity related to concentration of paramagnetics (iron, manganese, ...)

Permeability Estimation

С

Permeability relates to porosity, surface to volume ratio, and a lithology geometry factor.

$$k_{Timur-Coates} = a \cdot n^b \cdot \left(\frac{S_y}{S_r}\right)$$
$$k_{SDR} = a \cdot n^b \cdot T2_{LM}^c$$

Correcting For Salinity

Apparent (Measured) Water Volume = HI × True Water Volume

- Tool response lower than true water volume.
- Relevant in Brine Mining. Regularly see 250,000 ppm
- Calculate Hydrogen Index (HI) by calculating an effective sodium solution density.
- Definition: The number of hydrogen atoms per unit volume divided by the number of hydrogen atoms per unit volume of pure water at surface conditions.
- HI of pure water is 1.

Downhole BMR Data

- Aquifer / Reservoir
- Aquitard / Aquiclude
- Permeability / Hydraulic Conductivity
- Total Porosity
- Moveable Fluids (Specific Yield)
- Irreducible Fluids (Specific Retention)

Potash Brine Mining

Lake Throssell

Potash Brine Mining

- Potassium sulphate, or sulphate of potash (SOP), is mainly used in fertilisers and contains important nutrients for plant growth. It does not contain chloride which can be a detriment to plants that are chloride-sensitive such as avocados and coffee beans.
- Only 35% of SOP comes from natural resources and is considered a rarity.
- SOP is water soluble and can form mineable deposits below the subsurface hosted within hypersaline groundwater.
- SOP can be mined by extracting hypersaline groundwater via trenching or through boreholes and processing via evaporation ponds and a purification plant.

(Images courtesy Trigg Minerals)

Lake Throssell

- The Lake Throssell Project covers an area of 1,085km² approximately 180km east of Laverton, Western Australia.
- The Project contains a total drainable Mineral Resource Estimate of 13.3Mt of SOP with an initial 21-year mine life.
- The salt lake acts as a point of discharge for the regional groundwater system. Groundwater flow in the shallow sediments within the lake's catchment flows towards the lake surface where evaporation is dominant and there is a net loss to the system making the groundwater hypersaline in nature.
- Average grade of 4,760 mg/L potassium.

ASX Announcement 1/02/2023: Positive Brine Assay and Borehole Magnetic Resonance Results from Lake Throssell ASX Announcement 5/10/2021: Scoping Study Results Presentation

Hyd. Cond. (KTIM) WATER VOLUME T2DIST Corrected TPOR Corrected 0 0.04 0.0001 0.0004 Wat Hyd. Cond. (KSDR) T2LM Corrected VN 0.6 0.5 5000 0.0001 V/V 0.5 20 40 60 80 100

BMR Results

- Clear delineation of sand / clay and bound / free fluid intervals
- Allow calculation of specific yield (defined as movable water)
- Estimate hydraulic conductivity to inform aquifer performance.
- Salinity Correction on HI=0.908, i.e increase of fluid volumes of 10%.

Alluvium

- Upper clay dominated aquifer
- Dual T2 peaks indicate presence of small and large pores. Dominated by small pores.
- Sy=0.11

Lacustrine Clay

- Short single peak T2 indicated clay lithology
- Clay Dominated
- Notable Calcrete bands with which will yield brine
- Sy=0.03

Fluvial Sand

- Primary production aquifer
- Dual peak at top of unit with clay peak not present further down. Indicates clay/sand transition into sand dominated unit.
- Fluvial / Clayey sands
- Sy=0.20

Saprolite

- Intermediate T2 peaks indicate capillary bound water / silt dominated lithology.
- Basal Aquifer
- Minor gravelly sand zone
- Sy=0.05

Conclusions

Conclusions and Outcomes

- Poro-perm measurements are critical in knowing whether an ISR project is feasible.
- Traditional Hydrogeological data acquisition is time consuming, requires specialized expertise and can be expensive.
- BMR using NMR principles can give:
 - Differentiate bound and free fluid
 - Can provide lithological characterisation.
 - Logged without use of radioactive sources.
- Case study outcomes:
 - The BMR measurements confirm the presence of high free fluid aquifer units.
 - Enable Estimation of Specific Yield on an aquifer-by-aquifer basis.
 - Directly inform resource estimate.
 - Account for BMR logging in flowing sands during planning (case in PVC)

(Images courtesy Trigg Minerals)

Acknowledgements

- Aquifer Resources for insight into the workflow for BMR data at Lake Throssell.
 - Adam Lloyd

- Trigg Minerals for kindly allowing us to present their data.
 - Keren Paterson

ORICA Digital Solutions

- Colleagues at Orica Digital Solutions for their ongoing support
 - Jordan McGlew
 - Jonathan Ross
 - Benjamin Birt

