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Experimental goals
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comparison

Biaxial stress

Higher injection rate is in favour of fracturing

The dominant parameter is natural fractures

Higher uniaxial stress will affect breakdown pressure

Gaseous fracturing fluid has equivalent performance of
liquid counterparts

Stress distribution will alter fracture geometry
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Free-standing HF experiments
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Biaxial HF experiments

360° 270° 180° 90° 0°

270° clockwise

/ 0° sample front

90° clockwise
Glued section, % L J_ _______ —— —
of the length I
L | |
Axial T T T | J
Pressure [ | :
tial hole, 2/3
of the length

Injection Injection

Pressure Pressure 2 Pressure and

® Strain Gauge
Data
! Acquisition
ki oo o oo —e!

Confinement
Pressure

ISCO Pumps
Floaxlab Pump

Biaxial =y Biaxial stress

20239

o



N
(%3}

= N
(%} (=]

=
o

Axial and Injection Pressure (MPa)

[%,]

Datasets collected from experiments
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Breakdown pressure comparison (1)

Sample No. Fracture Fluid Flow Rate(cc/min) Bd Pressure(MPa) Fracture outcome
CrusherlA |[Water 0.2 16.5|Fractured
CrusherlB |[Water 0.2 24.19|Fractured
Crusher2 Water 0.4 19.71|Fractured
Crusher7 Water 0.3 9.56|Connected Natural
Crusher8 Water 0.5 16.23|Fractured
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Breakdown pressure comparison (2)

Sample No. Axial Stress(MPa) Conf. Stress(MPa) Fracture Fluid Flow Rate(cc/min) Bd Pressure(MPa) Fracture outcome

152-7-3 6 O[Nitrogen 1 23.13|Clear Frac
152-5-6 12 O[Nitrogen 1 24.84|Clear Frac
152-2-1 12 O|Nitrogen 1 20.46|Clear Frac
153-5-2 12 O[Nitrogen 1 19.88|Clear Frac
153-5-4 12 O|Nitrogen 1 35.76|Clear Frac
153-4-9 18 O|Nitrogen 1 25.71|Clear Frac
153-4-4 20 O[Nitrogen 1 27.8|Clear Frac
153-3-1 22 O|Nitrogen 1 20.42|Clear Frac
153-4-1 24 O|Nitrogen 1 22.68|Clear Frac
153-6-2 45.61 O[Nitrogen 1 20.7|Clear Frac
31-6-1 94.55 O[Nitrogen 1 17.68|Frac not visble
35 4 2
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Sample No. Axial Stress(MPa) Conf. Stress(MPa) Fracture Fluid Flow Rate(cc/min) Bd Pressure(MPa) Fracture outcome

Breakdown pressure comparison (3)

152-1-3 12 O|Brine 0.4 29.05|Frac
30-6-6 12 O|Brine 0.2 28| Frac
152-5-6 12 O[Nitrogen 1 24.56|Clear Frac
152-2-1 12 O[Nitrogen 1 20.46|Clear Frac
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Fracture geometry results comparison (1)
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Fracture geometry results comparison (2)
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Fracture geometry results comparison (3)
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Fracture geometry results comparison (4)
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Free-standing

Uniaxial

Biaxial

Experimental results

Flow rate

No external stress

Rich in natural
fractures

Uniaxial stress

Brine vs Nitrogen
comparison

Bi-direction stress

Higher injection rate is in favour of fracturing
(Need further confirmation)

Natural heterogeneity is the dominant factor of HF
(Proven)

Higher uniaxial stress will affect breakdown pressure
(Proven)

Gaseous fracturing fluid has equivalent performance of liquid
counterparts (Proven)

Stress distribution will alter fracture geometry
(Proven)
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Conclusions(?)
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More control over HF
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Experimental approach for more control over HF
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Breakdown pressure comparison (4)
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Fracture geometry results comparison (5)

153-6-7 153-3-2
V:H=1:3 V:H=1:3
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More Control
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Control methods proven

Lowering
breakdown
pressure

Decide starting
point of fracture

Higher wellbore
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Local artificial
heterogeneity
(proven)
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Conclusions & Implications

« Hydraulic fracturing can be applied to create fractures in hard rock deposits

« Heterogeneities (i.e., faults, mineral veins) in hard rock dominates the fracture starting
point, thus can be exploited for designating fracture starting point and further propagation
direction guidance

* In-situ stress distribution ratio in hard rock will guide fracture propagation direction
regardless of absolute stress values, especially when fracture point is locally intact

 High deviance in in-situ stress distribution tend to create smooth fractures without
branches, thus it is recommended to apply more control over fracture process for
optimum fracturing volume in hard rock deposit

« Environmental benign fluids (i.e., nitrogen) and larger wellbore diameter can be applied in
HF-ISR enhancement with potentially lower breakdown pressure requirement

“ALTA
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