Renewed Experimental Hydraulic Fracturing Technique For Hard Rock In-situ Recovery Enhancement

Hongyi Sun, Mohammad Sarmadivaleh

WASM:MECE, Curtin University

ISR, developments, limitations and solutions

(D. Earley III. 2020)

(M. Seredkin et al. 2016)

gold industry

Experimental goals

Free-standing, Uniaxial, and Biaxial HF experiments

Free-standing HF experiments

Uniaxial HF experiments

6

Biaxial HF experiments

7

Datasets collected from experiments

Breakdown pressure comparison (1)

Sample No.	Fracture Fluid	Flow Rate(cc/min)	Bd Pressure(MPa)	Fracture outcome
Crusher1A	Water	0.2	16.5	Fractured
Crusher1B	Water	0.2	24.19	Fractured
Crusher2	Water	0.4	19.71	Fractured
Crusher7	Water	0.3	9.56	Connected Natura
Crusher8	Water	0.5	16.23	Fractured

Breakdown pressure comparison (2)

Sample No.	Axial Stress(MPa)	Conf. Stress(MPa)	Fracture Fluid	Flow Rate(cc/min)	Bd Pressure(MPa)	Fracture outcome
152-7-3	6	0	Nitrogen	1	23.13	Clear Frac
152-5-6	12	0	Nitrogen	1	24.84	Clear Frac
152-2-1	12	0	Nitrogen	1	20.46	Clear Frac
153-5-2	12	0	Nitrogen	1	19.88	Clear Frac
153-5-4	12	0	Nitrogen	1	35.76	Clear Frac
153-4-9	18	0	Nitrogen	1	25.71	Clear Frac
153-4-4	20	0	Nitrogen	1	27.8	Clear Frac
153-3-1	22	0	Nitrogen	1	20.42	Clear Frac
153-4-1	24	0	Nitrogen	1	22.68	Clear Frac
153-6-2	45.61	0	Nitrogen	1	20.7	Clear Frac
31-6-1	94.55	0	Nitrogen	1	17.68	Frac not visble

10

Breakdown pressure comparison (3)

Sample No.	Axial Stress(MPa)	Conf. Stress(MPa)	Fracture Fluid	Flow Rate(cc/min)	Bd Pressure(MPa)	Fracture outcome
152-1-3	12	0	Brine	0.4	29.05	Frac
30-6-6	12	0	Brine	0.2	28	Frac
152-5-6	12	0	Nitrogen	1	24.56	Clear Frac
152-2-1	12	0	Nitrogen	1	20.46	Clear Frac

Fracture geometry results comparison (1)

Fracture geometry results comparison (2)

V = 12 MPa, H = 3 MPa

Fracture geometry results comparison (3)

14

Fracture geometry results comparison (4)

Experimental results

Conclusions(?)

More control over HF

Experimental approach for more control over HF

Breakdown pressure comparison (4)

Fracture geometry results comparison (5)

Control methods proven

Conclusions & Implications

- Hydraulic fracturing can be applied to create fractures in hard rock deposits
- Heterogeneities (i.e., faults, mineral veins) in hard rock dominates the fracture starting point, thus can be exploited for designating fracture starting point and further propagation direction guidance
- In-situ stress distribution ratio in hard rock will guide fracture propagation direction regardless of absolute stress values, especially when fracture point is locally intact
- High deviance in in-situ stress distribution tend to create smooth fractures without branches, thus it is recommended to apply more control over fracture process for optimum fracturing volume in hard rock deposit
- Environmental benign fluids (i.e., nitrogen) and larger wellbore diameter can be applied in HF-ISR enhancement with potentially lower breakdown pressure requirement

Acknowledgements

Shuo Liu, Runhua Feng, Andrej Bona, Laura Kuhar, Ewan Sellers, Ebrahim Fathi Salmi, Geoffrey Batt MRIWA

Sponsors: Barrick Gold Corporation, Environmental Copper Recovery Pty Ltd., Freeport Minerals Corporation, Hatch, Heathgate Resources Pty Ltd., Minerals Research Institute of Western Australia, Mining and Process Solutions Pty Ltd., Mining3, Newmont USA Ltd., Newcrest Mining Ltd., Solvay, St Ives Gold Mining Company Pty Ltd, BHP

Thank you

References

1, Maxim Seredkin, Alexander Zabolotsky, Graham Jeffress, In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics, Ore Geology Reviews, Volume 79,2016,Pages 500-514,ISSN 0169-1368,https://doi.org/10.1016/j.oregeorev.2016.06.016.

2, Drummond Earley III, *In Situ Recovery and Remediation of Metals*, Society for Mining, Metallurgy & Exploration, Incorporated, 2020. ISBN: 9780873354868

3, Gregory Zuckerman, *The Frackers: The Outrageous Inside Story of the New Energy Revolution*, Penguin, 2013. ISBN:1591847095

