Process Development for Hydrometallurgical Recovery of Base and Precious Metals from Waste Printed Circuit Boards

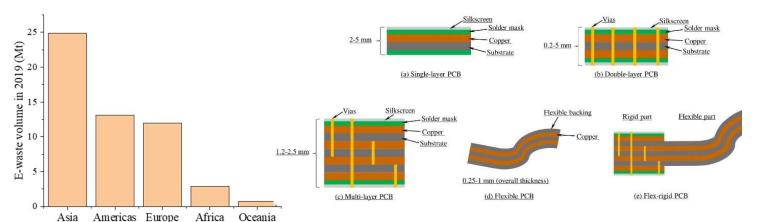
Huan Li, Elsayed Oraby, Jacques Eksteen

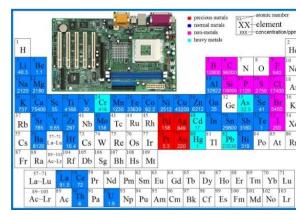
Critical Minerals, Metals & Materials in the Energy Transition (CaMET),

WA School of Mines: Minerals, Energy and Chemical Engineering,

Curtin University, Australia

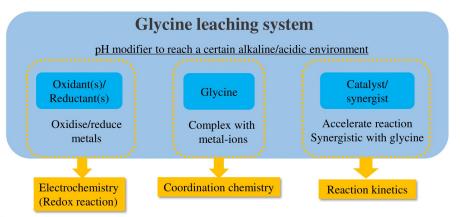
Outline


- 1. "Urban Mining" of e-waste
- 2. Development of glycine-based process
- 3. Development of sulfuric acid leaching process
- 4. Recommendations for future study
- 5. Acknowledgements



"Urban Mining" of e-waste

- Australia generated 554 kt of e-waste in 2019, ranking 5th worldwide per capita, and only 10.4% of them were documented to be collected and recycled.
- Waste PCBs are complicated e-waste in composition and contents: 40% metals, 30% plastics, 30% ceramics; ~40 types of metals and ~10 types of non-metals; metals locked in plastics & alloys.
- Proximity to the urban area requiring a safe process.



"Urban Mining" of e-waste

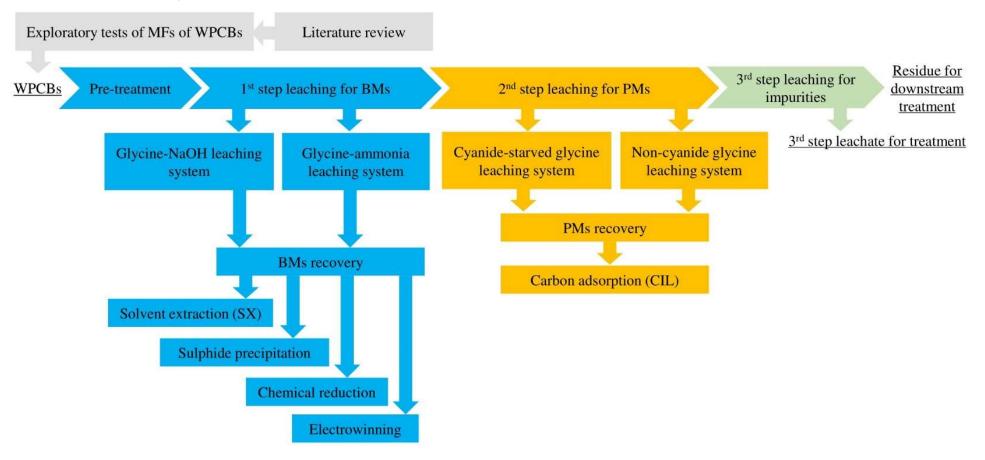
- Western Australia's scenario
 - Low e-waste volume a pyrometallurgical process may not be highly economical
 - Vast geography expensive road transport to a centralized location
- Why hydrometallurgy?
 - De-centralized; flexible in scales and modules; capital-friendly to SMEs
- Glycine leaching systems
 - Involving technologies invented at Curtin University and owned by Draslovka a.s.

Waste PCBs

Mechanical-physical processing

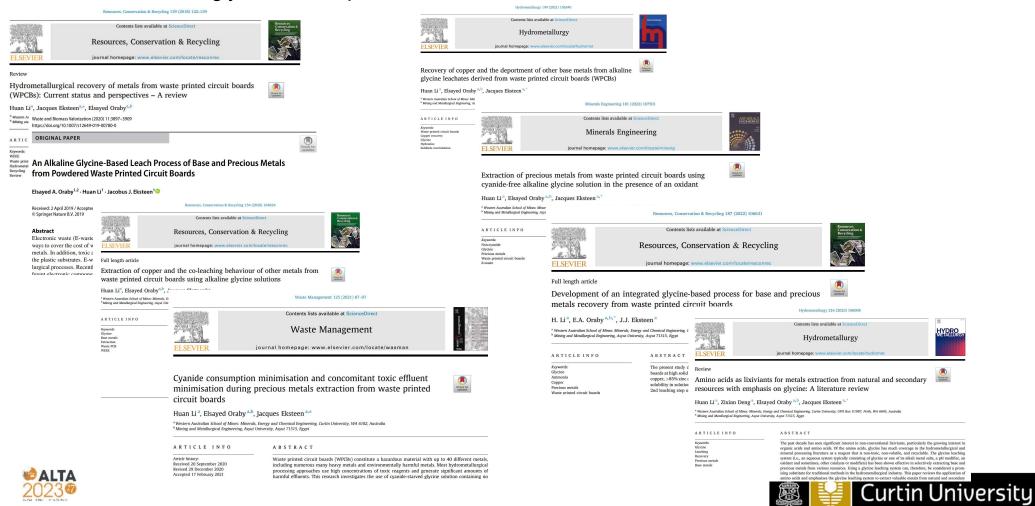
Pyrometallurgy

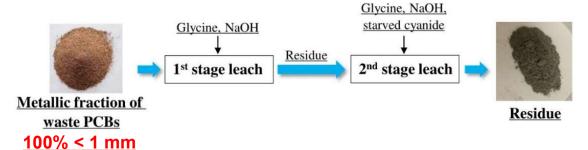
- <u>Incineration</u>
- Pyrolysis


Hydrometallurgy

- Mineral acid
- Organic acid
- Ammonia
- Cyanidation
- Thio-system

Bio-metallurgy (bioleaching)


Schematic diagram of process development



Publications from glycine-based process development

Preliminary flowsheet:

Simple pre-treatment:

- PCBs source: PC motherboards
- Electronic components remained
 - Except high-values
- No complicated physical processing

	Dismantling WPCBs with ECs	CPUs, RAMs (high Au value)
	Shredding	separately
RAMs and CPU removed	Selection	Pure metals (heat sinks, ports, fasteners)
	Cutting/milling	
	WPCBs (100% < 2 mm)	Conducted by the supplier

WPCBs

Metal content and economic value							200000000000000000000000000000000000000				
	Metal content in wt. %				Metal con	tent in ppi					
	Cu	Fe	Al	Sn	Pb	Zn	Ni	Со	Au	Ag	Pd
Metal content	22.60	1.83	3.18	2.81	0.34	0.69	865.50	59.72	106.77	170.50	10.37
Metal value (%)	18.2	-	0.8	6.7	0.1	0.2	0.2	0.03	66.4	1.2	6.2

Glycine-NaOH leaching of base metals:

- Restrained by solids%: <2-5% waste PCBs are highly metal-rich!
- Slow leaching kinetics: ~3 days to complete copper leaching

Metals recovery from leachates:

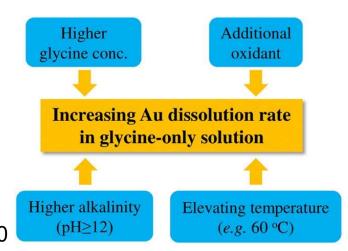
Method	Impurity	Conditions required	Kinetics	Co-precipitation	Product
Hydrazine (N ₂ H ₄) reduction	None (N ₂ and H ₂ O)	pH > 12 Cu > 5g/L	>90% Cu recovery within 0.5-2 hours	Sn, Pb	Cuprite (Cu ₂ O) or metallic copper
Sulfide precipitation	Sulfur	Cu/HS⁻ molar ratio ≤1:1.2	Fast kinetics: >90% copper recovery within 5 min	Zn, Pb, Sn, Ni	Covellite (CuS) at 87.9% purity
Solvent extraction (Mextral 54–100 and Mextral 84H)	-	15% Mextral 84H & 200 g/L H ₂ SO ₄ ; 30% Mextral 54– 100 & 80 g/L H ₂ SO ₄	85-95% Cu extraction; 99% Cu stripping	Ni (Pb and Sn not investigated)	Metallic copper or copper sulfate after downstream treatment



Glycine-ammonia leaching of base metals:

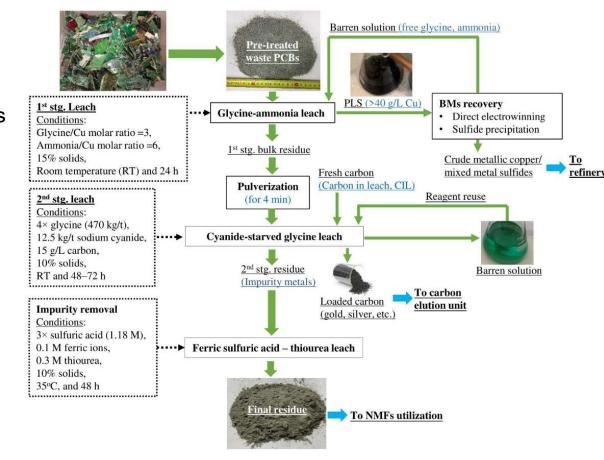
- Solids% increased to 15%~: >40 g/L copper in PLS
- Copper leaching shortened to 24 hours
- Ammonia concentration reduced by ~80%, compared with conventional ammoniacal leaching
- Ammonia played the key roles of:
 - √ pH modifier
 - ✓ Synergist
 - ✓ Copper stabilizer

Cyanide-starved glycine leaching of precious metals:


- Cyanide acted as "catalyst" for copper and silver dissolutions
- Similar or better PMs extraction, compared with stoichiometric or intensive cyanidation
- Cyanide use was reduced by 70-90% (250 ppm vs 3500 ppm, no free cyanide after 4 hours)

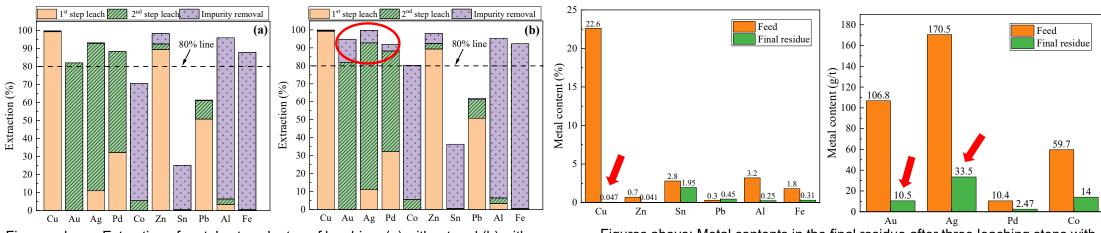
Non-cyanide glycine leaching of precious metals:

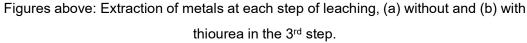
- Permanganate or ferricyanide with glycine solution effectively leached
 PMs, namely glycine-oxidant leaching system
- Similar or comparable PMs extraction, compared with cyanide-starved glycine leaching or intensive cyanidation
- Rapid decomposition of glycine was observed when permanganate added
- Oxidant consumptions were high, i.e., 630 kg/t K-permanganate or 610 kg/t K-ferricyanide

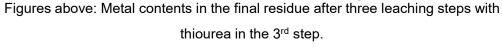


An improved process:

- 1st step glycine-ammonia leaching at 15% solids
- Pulverization used to liberate precious metals from plastics
- 2nd step cyanide-starved glycine leaching at 10% solids
- 3rd step sulfuric acid Fe³⁺ (thiourea)
 leaching at 10% solids

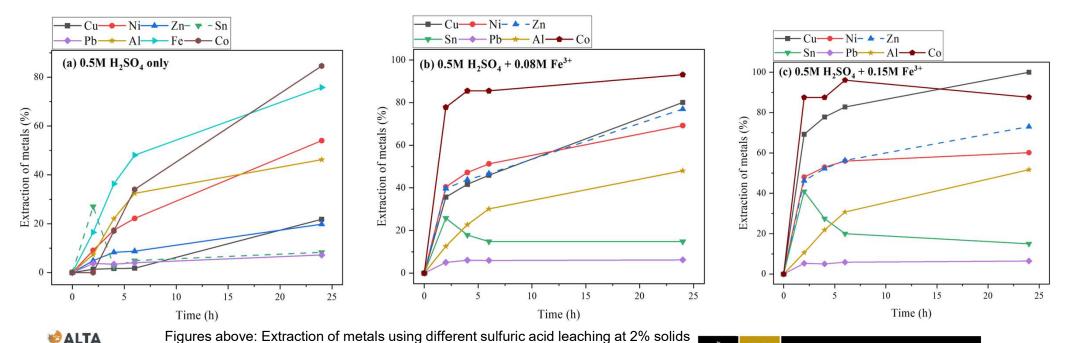






An improved process:

- Overall extraction: >99% copper, >90% gold, >95% silver and >85% palladium
- Metal content in residue: 0.047% copper, <1% base metals (except tin), <35 ppm precious metals

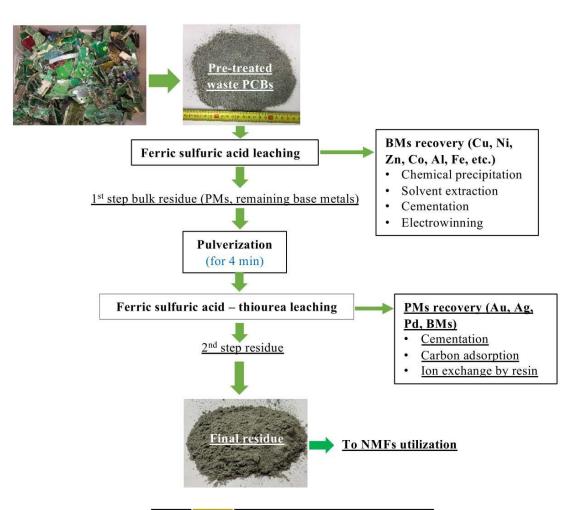

Development of sulfuric acid leaching process

Leaching of pre-treated waste PCBs (100%< 2mm):

- Oxidant, e.g., Fe³⁺, was essential for copper leaching
- Leaching time can be shortened to ~24 hours
- Tin and lead (e.g., solder materials) remained low extractions (<20%)

and room temperature.

No gold and palladium were leached; silver leaching was <15%.



Development of sulfuric acid leaching process

Sulfuric acid leaching process:

- Well known in chemistry
- Non-selective for base metals
- 1st step sulfuric acid Fe³⁺ leaching of copper
 & base metals
- 2nd step sulfuric acid Fe³⁺ thiourea leaching of precious metals & remaining base metals
- Physical separation is suggested prior to hydrometallurgical leaching

Recommendations for future study

- More fundamental studies
- Mechanical-physical separation of bulk of metals
- Ferricyanide regeneration and reuse
- Glycine recycling and reuse
 - Glycine decomposition
 - > Glycine quantification
- Residue utilization
- Pilot scale tests
- Techno-economic assessment

Acknowledgements

Curtin University

Thank you for your attention!

