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“Urban Mining” of e-waste

Source: Li, H., Eksteen, J. and Oraby, E., 2018. Resour. Conserv. Recy., 139: 122-139.
Lu, Y. and Xu, Z., 2016. Resour. Conserv. Recy., 113: 28-39

 Australia generated 554 kt of e-waste in 2019, ranking 5th worldwide per capita, and only 10.4% of them 
were documented to be collected and recycled.

 Waste PCBs are complicated e-waste in composition and contents: 40% metals, 30% plastics, 30% 
ceramics; ~40 types of metals and ~10 types of non-metals; metals locked in plastics & alloys.

 Proximity to the urban area – requiring a safe process.
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“Urban Mining” of e-waste

Source: Li, H., Eksteen, J. and Oraby, E., 2018. Resour. Conserv. Recy., 139: 122-139.

 Western Australia’s scenario

• Low e-waste volume – a pyrometallurgical process may not be highly economical

• Vast geography – expensive road transport to a centralized location

 Why hydrometallurgy?

• De-centralized; flexible in scales and modules; capital-friendly to SMEs

 Glycine leaching systems

• Involving technologies invented at Curtin University and owned by Draslovka a.s.

Mechanical-physical
processing

Waste PCBs

Pyrometallurgy
• Incineration
• Pyrolysis
Hydrometallurgy
• Mineral acid
• Organic acid
• Ammonia
• Cyanidation
• Thio-system
Bio-metallurgy (bioleaching)



5

Development of glycine-based process
 Schematic diagram of process development
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Development of glycine-based process
 Publications from glycine-based process development
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Source: Oraby, E.A., Li, H. and Eksteen, J.J., 2019. Waste Biomass Valori., 11(8): 3897-3909.
Li, H., Oraby, E., and Eksteen, J., 2020. Resour. Conserv. Recy., 154:104624.

Preliminary flowsheet:

100% < 1 mm

Development of glycine-based process

Simple pre-treatment:

 PCBs source: PC motherboards

 Electronic components remained

• Except high-values

 No complicated physical processing

Metal content and economic value 

Metal content in ppmMetal content in wt. %

PdAgAuCoNiZnPbSnAlFeCu

10.37170.50106.7759.72865.500.690.342.813.181.8322.60Metal content

6.21.266.40.030.20.20.16.70.8-18.2Metal value (%) 
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Glycine-NaOH leaching of base metals:

• Restrained by solids%: <2-5% – waste PCBs are highly metal-rich!

• Slow leaching kinetics: ~3 days to complete copper leaching

Development of glycine-based process

Metals recovery from leachates:

Source: Li, H., Oraby, E., and Eksteen, J., 2021. Hydrometallurgy, 199: 105540.
Li, H., Oraby, E., and Eksteen, J., 2020. Resour. Conserv. Recy., 154:104624.

ProductCo-precipitationKineticsConditions
required

ImpurityMethod

Cuprite (Cu2O) or 
metallic copper

Sn, Pb>90% Cu recovery 
within 0.5-2 hours

pH > 12
Cu > 5g/L

None (N2 and H2O)Hydrazine (N2H4)
reduction

Covellite (CuS) at
87.9% purity

Zn, Pb, Sn, NiFast kinetics: 
>90% copper 
recovery within 5 
min

Cu/HS- molar ratio
≤1:1.2

SulfurSulfide 
precipitation

Metallic copper or
copper sulfate
after downstream
treatment

Ni (Pb and Sn not
investigated)

85-95% Cu
extraction; 99% Cu
stripping

15% Mextral 84H
& 200 g/L H2SO4;
30% Mextral 54–
100 & 80 g/L
H2SO4

-Solvent extraction
(Mextral 54–100 
and Mextral 84H)
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Development of glycine-based process

Glycine-ammonia leaching of base metals:

• Solids% increased to 15%~: >40 g/L copper in PLS

• Copper leaching shortened to 24 hours

• Ammonia concentration reduced by ~80%, compared with conventional ammoniacal leaching

• Ammonia played the key roles of:

 pH modifier

 Synergist

 Copper stabilizer 

Cyanide-starved glycine leaching of precious metals:

• Cyanide acted as “catalyst” for copper and silver dissolutions

•  Similar or better PMs extraction, compared with stoichiometric or intensive cyanidation

• Cyanide use was reduced by 70-90% (250 ppm vs 3500 ppm, no free cyanide after 4 hours)

Source: Li, H., Oraby, E., and Eksteen, J., 2022. Resour. Conserv. Recy., 187: 106631.
Li, H., Oraby, E., and Eksteen, J., 2021. Waste Manage., 125: 87-89.
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Development of glycine-based process

Non-cyanide glycine leaching of precious metals:

• Permanganate or ferricyanide with glycine solution effectively leached

PMs, namely glycine-oxidant leaching system

• Similar or comparable PMs extraction, compared with cyanide-starved

glycine leaching or intensive cyanidation

• Rapid decomposition of glycine was observed when permanganate

added

• Oxidant consumptions were high, i.e., 630 kg/t K-permanganate or 610

kg/t K-ferricyanide

Source: Li, H., Oraby, E., and Eksteen, J., 2022. Minerals Engineering, 181: 107501.
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An improved process:

• 1st step glycine-ammonia leaching at 15% 

solids

• Pulverization used to liberate precious metals 

from plastics

• 2nd step cyanide-starved glycine leaching at 

10% solids

• 3rd step sulfuric acid – Fe3+ – (thiourea) 

leaching at 10% solids

Development of glycine-based process

Source: Li, H., Deng, Z., Oraby, E., and Eksteen, J., 2023. Resour. Conserv. Recy., 187: 106631.
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An improved process:

• Overall extraction: >99% copper, >90% gold, >95% silver and >85% palladium

• Metal content in residue: 0.047% copper, <1% base metals (except tin), <35 ppm precious metals

Development of glycine-based process

Source: Li, H., Deng, Z., Oraby, E., and Eksteen, J., 2023. Resour. Conserv. Recy., 187: 106631.
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Figures above: Extraction of metals at each step of leaching, (a) without and (b) with 

thiourea in the 3rd step.
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Figures above: Metal contents in the final residue after three leaching steps with 

thiourea in the 3rd step.
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Leaching of pre-treated waste PCBs (100%< 2mm):

• Oxidant, e.g., Fe3+, was essential for copper leaching

• Leaching time can be shortened to ~24 hours

• Tin and lead (e.g., solder materials) remained low extractions (<20%)

• No gold and palladium were leached; silver leaching was <15%.

Development of sulfuric acid leaching process

Figures above: Extraction of metals using different sulfuric acid leaching at 2% solids

and room temperature.
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Sulfuric acid leaching process:

• Well known in chemistry

• Non-selective for base metals

• 1st step sulfuric acid – Fe3+ leaching of copper

& base metals

• 2nd step sulfuric acid – Fe3+ – thiourea leaching

of precious metals & remaining base metals

• Physical separation is suggested prior to

hydrometallurgical leaching

Development of sulfuric acid leaching process
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• More fundamental studies

• Mechanical-physical separation of bulk of metals

• Ferricyanide regeneration and reuse

• Glycine recycling and reuse

 Glycine decomposition

 Glycine quantification

• Residue utilization

• Pilot scale tests

• Techno-economic assessment

Recommendations for future study 
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