High-Pressure Slurry Ablation (HPSA) – A New Liberation Technology

John Lee, MBA (PhD Candidate – Mining Engineering)

Disa Technologies, Inc.

Norman B. Keevil Institute of Mining Engineering, University of British Columbia

TECHNOLOGY FOR MINERALS PROCESSING AND REMEDIATION FOCUSED ON:

INCREASING RECOVERIES

NEUTRALIZING WASTE

CONCENTRATING CRITICAL MINERALS

TECHNOLOGY OVERVIEW

• High-Pressure Slurry Ablation (HPSA)

- Slurry formed with feed material and water
- Mechanical process creating particleparticle collisions
- Creates an intergranular fracture using the intrinsic material properties.

SELECTIVE LIBERATION

Sand grain is heavily coated with Uranium and Vanadium minerals

Particle-particle collisions allow for efficient Uranium and Vanadium separation

TECHNOLOGY OVERVIEW

DESIGN OF EXPERIMENTS

CFD OPTIMIZATION

Credit – Dustin Weaver (UBC PhD Student)

TECHNOLOGY DEVELOPMENT

URANIUM REMEDIATION

Over 15,000 abandoned uranium mines (or waste piles) in the Western United States

Many of these waste piles are on or near tribal locations

Most of these waste piles:

Created over 4 decades ago

Sit on the surface where uranium has oxidized

Limits use of the land May cause dose and contamination issues

Uranium Remediation Options

URANIUM REMEDIATION

Before HPSA

11

After HPSA

MINE WASTEROCK EXAMPLE

Site Location – Western Colorado

RADIOLOGICAL & MINERALOGICAL COMPONENTS

Parameter	Units	Waste Rock	Clean Coarse Fraction	Total Reduction	Percent Reduction
Lead 210	pCi/g	149	37.1	111.9	75.10%
Radium 226	pCi/g	125	70.4	54.6	43.68 %
Radium 228	pCi/g	1.9	1	0.9	47.37 %
Thorium 230	pCi/g	153	74.7	78.3	51.18 %
Thorium 232	pCi/g	ND	ND	NA	NA
Vanadium	mg/k g	1,362	409	953	70 %
Uranium	mg/k g	912	129	782	86%

HPSA Reduces the Overall Radiological Signature

· 13

MINERAL LIBERATION ANALYSIS RESULTS

MLA demonstrates that the clean coarse fraction is stable

Mineral	Color
Albite	
Apatite	
Calcite	
Carnotite	
Chlorite	
Dolomite	
Illite	
Oligoclase	
Orthoclase	
Quartz	
Zircon	

+100-mesh: 51.3% of total mass, 130 ppm U, **0.00% Leachable**

SYNTHETIC PRECIPITATION

Parameter Units		Waste Rock	Clean Coarse Fraction	% Difference
Arsenic	mg/L	0.664	0.148	78 %
Lead	mg/L	0.014	0.006	57 %
Selenium	mg/L	0.020	0.006	70 %
Uranium	mg/L	0.10	0.06	40 %
Vanadium	mg/L	0.57	0.14	75 %
Lead 210	pCi/L	9.9	6.2	37 %
Radium 226	pCi/L	20.0	9.8	51%
Radium 228	pCi/L	ND	ND	NA
Thorium 230	pCi/L	7.4	4.0	46%
Thorium 232	pCi/L	ND	ND	NA

POST-REMEDIATION CLEAN COARSE FRACTION DOSE

Individual Type	Hours/ Day	Months	Total Days	Total Hours
Public	8	6	180	1440

Case	Туре	Dose Rate (mrem/hr)	Annual Dose (mrem/yr)	Dose Limit (mrem/yr)	% of limit	
Maximum ^a	Public	0.006	8.8	25 ^b	35.2%	
	^a Maximum dose occurred at the closest modeled distance, 0.1 m, from the surface of the source volume. ^B Unrestricted release limit					

Maximum Public Exposure to Clean Fraction is Well Below Regulatory Limits

NAVAJO NATION STUDY

- Significantly higher rates of cancer and kidney failure on Navajo Nation
- 85% of homes contaminated with uranium
- 523 Sites with EPA cleanup funds

Is HPSA effective?

17

Reduced contamination by up to 98%

Is HPSA economic?

50 – 80% cheaper than current alternative

Does HPSA work on a variety of materials?

Successful at 3 different sites on Navajo Nation

*Supported by US EPA and Navajo Nation EPA

PUBLIC POLICY & BENEFIT

Waste Remediation -

- Return mine sites to useable recreational areas
- Reduce radiological signatures to ALARA
- Disposal of concentrated materials addresses long-standing environmental justice concerns

HURDLES TO REMEDIATION

- Regulators understanding how to license innovative technology
- Operating technology at scale (Gen Bravo)

TRADITIONAL MINERALS PROCESSING CIRCUITS

RARE EARTH ELEMENTS

• HPSA processing improved concentration of the TREEs from 29.0% in the Feed to 95%

PHOSPHATE

- Pilot unit installed in November 2022
- Provides ability to test HPSA technology on various parameters

PHOSPHATE

23

 Legacy equipment, underperforming with current orebody characteristics

HPSA PILOT UNIT

- HPSA product grade increased by almost 5% while increasing recovery by nearly 3%
- Also reduced gangue material in product

GRAPHITE

HPSA Test 1 *Rougher Flotation* Grade – 74% Recovery – 94% P₈₀ = 372 μm

HPSA Test 2 *Rougher Flotation* Grade – 80% Recovery – 96% P₈₀ = 352 μm

- Post process flotation concentrate showed increased grade
- Replaces current ball mill prior to rougher flotation step and associated OPEX

- HPSA process benchmarked against traditional milling applications
- HPSA not only reduces energy consumption, but can displace multiple unit operations

Current Process

- Size reduction of ROM Ore
- Concentrator Circuit with Ball Mill to Increase Grade to 55%
- Post-Concentrator Circuit
 - 1 Polishing Mill

ENERGY CONSUMPTION

- 8 flotation banks
- 2 attrition cells

· 25

- 2 column flotation cells
- To achieve 95% purity product

With HPSA Installed

- Size reduction of ROM Ore
- Concentrator Circuit with HPSA to Increase Grade to 75+%
- Post-Concentrator Circuit
 - 1 Polishing Mill
 - 4 flotation banks
 - -1 attrition cells
 - 1 column flotation cells
 - To achieve 95% purity product
- For a 250 TPH unit, Disa's model indicates 1 3 kWh / ton energy consumption

GOLD TAILINGS

• After HPSA processing, the rougher flotation concentrate grade nearly doubled and recovery increased by over 15% when compared to the current flotation process.

Thank you!

www.DisaUSA.com

John Lee john@DisaUSA.com

